在 windows anaconda 中安装 tensorflow - 并 运行 使用 Spyder GUI 使用它

installing tensorflow in windows anaconda - and running using it using Spyder GUI

我访问了 the tensorflow page 并遵循了 Installing with Anaconda 部分的说明。当我尝试验证我的安装时,出现以下错误

(C:\ProgramData\Anaconda3) C:\Users\nik>python
Python 3.6.1 |Anaconda 4.4.0 (64-bit)| (default, May 11 2017, 13:25:24) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'tensorflow'
>>> hello = tf.constant('Hello, TensorFlow!')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'tf' is not defined
>>> exit
Use exit() or Ctrl-Z plus Return to exit
>>> exit()

然后我尝试了

(C:\ProgramData\Anaconda3) C:\Users\nik>activate tensorflow

(tensorflow) C:\Users\nik>pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.2.1-cp35-cp35m-win_amd64.whl
Collecting tensorflow==1.2.1 from https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.2.1-cp35-cp35m-win_amd64.whl
  Using cached https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.2.1-cp35-cp35m-win_amd64.whl
Collecting bleach==1.5.0 (from tensorflow==1.2.1)
  Using cached bleach-1.5.0-py2.py3-none-any.whl
Collecting html5lib==0.9999999 (from tensorflow==1.2.1)
Collecting backports.weakref==1.0rc1 (from tensorflow==1.2.1)
  Using cached backports.weakref-1.0rc1-py3-none-any.whl
Collecting werkzeug>=0.11.10 (from tensorflow==1.2.1)
  Using cached Werkzeug-0.12.2-py2.py3-none-any.whl
Collecting markdown>=2.6.8 (from tensorflow==1.2.1)
Collecting protobuf>=3.2.0 (from tensorflow==1.2.1)
Collecting numpy>=1.11.0 (from tensorflow==1.2.1)
  Using cached numpy-1.13.1-cp35-none-win_amd64.whl
Collecting six>=1.10.0 (from tensorflow==1.2.1)
  Using cached six-1.10.0-py2.py3-none-any.whl
Collecting wheel>=0.26 (from tensorflow==1.2.1)
  Using cached wheel-0.29.0-py2.py3-none-any.whl
Collecting setuptools (from protobuf>=3.2.0->tensorflow==1.2.1)
  Using cached setuptools-36.2.0-py2.py3-none-any.whl
Installing collected packages: six, html5lib, bleach, backports.weakref, werkzeug, markdown, setuptools, protobuf, numpy, wheel, tensorflow
Successfully installed backports.weakref-1.0rc1 bleach-1.5.0 html5lib-0.9999999 markdown-2.6.8 numpy-1.13.1 protobuf-3.3.0 setuptools-36.2.0 six-1.10.0 tensorflow-1.2.1 werkzeug-0.12.2 wheel-0.29.0

(tensorflow) C:\Users\nik>python
Python 3.5.3 |Continuum Analytics, Inc.| (default, May 15 2017, 10:43:23) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
2017-07-20 12:20:26.177654: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.178276: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.178687: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.179189: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.179713: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.180250: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.180687: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-20 12:20:26.181092: W c:\tf_jenkins\home\workspace\release-win\m\windows\py\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
>>> print(sess.run(hello))
b'Hello, TensorFlow!'

我的问题如下 - 我的主要问题是问题 3:

  1. 我是否应该在输入命令后验证安装 - activate tensorflow如上面第二个命令方块所示?
  2. 为什么我在之后会收到多个指令 命令 sess = tf.Session() ?
  3. 我可以在 间谍桂?如何?我在下面尝试过,但在 SPYDER gui 中,但没有取得任何成功:(

    激活tensorflow

文件“”,第 1 行

    activate tensorflow
                      ^

SyntaxError: invalid syntax


import tensorflow as tf

Traceback (most recent call last):


  File "<ipython-input-2-41389fad42b5>", line 1, in <module>
    import tensorflow as tf


ModuleNotFoundError: No module named 'tensorflow'

Q1: 是的,您在虚拟环境中安装了tensorflow,需要激活虚拟环境才能导入tensorflow。

Q2:不知道为什么会有多条指令,但这是正常的,是tensorflow内置的。您可以通过启用 SIMD 指令自行构建 tensorflow 来避免这些情况。 https://www.youtube.com/watch?v=ghv5fbC287o

Q3:创建虚拟环境需要修改第一步。使用以下命令创建虚拟环境 {conda create -n tensorflow python=3.5 anaconda}。

您Q3的详细回答如下:

  1. 使用"conda create -n tensorflow python=3.5 anaconda"

  2. 创建tensorflow环境
  3. 创建虚拟环境后输入命令"activate tensorflow"

  4. 现在使用 "pip install tensorflow"(CPU-only)或 pip install tensorflow-gpu(对于 GPU)安装 tensorflow。

  5. 现在转到安装anaconda的文件夹。

  6. 如果 C:\ProgramData\Anaconda3 是 Anaconda 根文件夹,则转到 "C:\ProgramData\Anaconda3\envs\test\Scripts" 并打开 spyder.exe。你应该可以在这个环境中成功导入tensorflow。

您应该从命令提示符激活您的虚拟环境。激活后,您应该 运行 命令 spyder 将从您的虚拟环境

打开 spyder gui

问题是你的tensorflow是安装在conda环境下的。所以首先以管理员身份打开 conda 提示符,然后输入 'activate tensorflow' 激活 tensorflow 环境,然后输入 spyder 打开你的 spyder gui。它主要会解决问题。