python、pandas:return 来自多索引的最高值
python, pandas: return highest values from multiindex
让我们考虑一个 pandas DataFrame 定义如下:
from decimal import Decimal
from pandas import Timestamp
dic={'volume': {('CSC', Timestamp('2016-08-05 00:00:00'), 'CSCF7'): Decimal('13'),
('CSC', Timestamp('2016-08-05 00:00:00'), 'CSCG7'): Decimal('6'),
('CSC', Timestamp('2016-08-05 00:00:00'), 'CSCH7'): Decimal('12'),
('DA', Timestamp('2016-08-05 00:00:00'), 'DCF7'): Decimal('47'),
('DA', Timestamp('2016-08-05 00:00:00'), 'DCG7'): Decimal('16'),
('DA', Timestamp('2016-08-05 00:00:00'), 'DCH7'): Decimal('27')
}}
df=pd.DataFrame(dic)
我想对其进行转换,使其returns成为第 3 个索引级别的最高值。例如,在当前示例中:
highest
CSC 2016-08-05 CSCF7
DA 2016-08-05 DCF7
有人知道如何执行吗?
你可以 groupby
在 level
上 idxmax
In [317]: df.groupby(level=0).idxmax()
Out[317]:
volume
CSC (CSC, 2016-08-05 00:00:00, CSCF7)
DA (DA, 2016-08-05 00:00:00, DCF7)
In [318]: df.groupby(level=0).idxmax().volume.apply(pd.Series)
Out[318]:
0 1 2
CSC CSC 2016-08-05 CSCF7
DA DA 2016-08-05 DCF7
或者,
In [338]: df.groupby(level=[0, 1]).volume.idxmax().apply(lambda x: x[-1])
Out[338]:
CSC 2016-08-05 CSCF7
DA 2016-08-05 DCF7
Name: volume, dtype: object
或者,
In [341]: df.groupby(level=[0, 1]).volume.idxmax().str[-1]
Out[341]:
CSC 2016-08-05 CSCF7
DA 2016-08-05 DCF7
Name: volume, dtype: object
让我们考虑一个 pandas DataFrame 定义如下:
from decimal import Decimal
from pandas import Timestamp
dic={'volume': {('CSC', Timestamp('2016-08-05 00:00:00'), 'CSCF7'): Decimal('13'),
('CSC', Timestamp('2016-08-05 00:00:00'), 'CSCG7'): Decimal('6'),
('CSC', Timestamp('2016-08-05 00:00:00'), 'CSCH7'): Decimal('12'),
('DA', Timestamp('2016-08-05 00:00:00'), 'DCF7'): Decimal('47'),
('DA', Timestamp('2016-08-05 00:00:00'), 'DCG7'): Decimal('16'),
('DA', Timestamp('2016-08-05 00:00:00'), 'DCH7'): Decimal('27')
}}
df=pd.DataFrame(dic)
我想对其进行转换,使其returns成为第 3 个索引级别的最高值。例如,在当前示例中:
highest
CSC 2016-08-05 CSCF7
DA 2016-08-05 DCF7
有人知道如何执行吗?
你可以 groupby
在 level
上 idxmax
In [317]: df.groupby(level=0).idxmax()
Out[317]:
volume
CSC (CSC, 2016-08-05 00:00:00, CSCF7)
DA (DA, 2016-08-05 00:00:00, DCF7)
In [318]: df.groupby(level=0).idxmax().volume.apply(pd.Series)
Out[318]:
0 1 2
CSC CSC 2016-08-05 CSCF7
DA DA 2016-08-05 DCF7
或者,
In [338]: df.groupby(level=[0, 1]).volume.idxmax().apply(lambda x: x[-1])
Out[338]:
CSC 2016-08-05 CSCF7
DA 2016-08-05 DCF7
Name: volume, dtype: object
或者,
In [341]: df.groupby(level=[0, 1]).volume.idxmax().str[-1]
Out[341]:
CSC 2016-08-05 CSCF7
DA 2016-08-05 DCF7
Name: volume, dtype: object