Pandas if/then 聚合
Pandas if/then aggregation
我一直在搜索,但还没有弄明白。希望有人能帮助这个 python 新手解决我的问题。
我正在尝试弄清楚如何在 python 中编写 if/then 语句并根据该 if/then 语句执行聚合。我的最终目标是说如果日期 = 1/7/2017 然后使用 "fake" 列中的值。如果 date = all else 然后将两列平均在一起。
这是我目前的情况:
import pandas as pd
import numpy as np
import datetime
np.random.seed(42)
dte=pd.date_range(start=datetime.date(2017,1,1), end= datetime.date(2017,1,15))
fake=np.random.randint(15,100, size=15)
fake2=np.random.randint(300,1000,size=15)
so_df=pd.DataFrame({'date':dte,
'fake':fake,
'fake2':fake2})
so_df['avg']= so_df[['fake','fake2']].mean(axis=1)
so_df.head()
让我们使用 np.where
:
so_df['avg'] = np.where(so_df['date'] == pd.to_datetime('2017-01-07'),
so_df['fake'], so_df[['fake',
'fake2']].mean(1))
输出:
date fake fake2 avg
0 2017-01-01 66 685 375.5
1 2017-01-02 29 491 260.0
2 2017-01-03 86 576 331.0
3 2017-01-04 75 460 267.5
4 2017-01-05 35 759 397.0
5 2017-01-06 97 613 355.0
6 2017-01-07 89 321 89.0
7 2017-01-08 89 552 320.5
8 2017-01-09 38 860 449.0
9 2017-01-10 17 774 395.5
10 2017-01-11 36 358 197.0
11 2017-01-12 67 810 438.5
12 2017-01-13 16 981 498.5
13 2017-01-14 44 775 409.5
14 2017-01-15 52 999 525.5
在 pandas 中执行 if-else 的一种方法是使用 np.where
里面有三个值,condition,if和else
so_df['avg']= np.where(so_df['date'] == '2017-01-07',so_df['fake'],so_df[['fake','fake2']].mean(axis=1))
date fake fake2 avg
0 2017-01-01 66 685 375.5
1 2017-01-02 29 491 260.0
2 2017-01-03 86 576 331.0
3 2017-01-04 75 460 267.5
4 2017-01-05 35 759 397.0
5 2017-01-06 97 613 355.0
6 2017-01-07 89 321 89.0
7 2017-01-08 89 552 320.5
8 2017-01-09 38 860 449.0
9 2017-01-10 17 774 395.5
10 2017-01-11 36 358 197.0
11 2017-01-12 67 810 438.5
12 2017-01-13 16 981 498.5
13 2017-01-14 44 775 409.5
14 2017-01-15 52 999 525.5
假设您已经计算了平均列:
so_df['fake'].where(so_df['date']=='20170107', so_df['avg'])
Out:
0 375.5
1 260.0
2 331.0
3 267.5
4 397.0
5 355.0
6 89.0
7 320.5
8 449.0
9 395.5
10 197.0
11 438.5
12 498.5
13 409.5
14 525.5
Name: fake, dtype: float64
如果不是,您可以用相同的计算替换列引用:
so_df['fake'].where(so_df['date']=='20170107', so_df[['fake','fake2']].mean(axis=1))
要检查多个日期,您需要使用 or 运算符的逐元素版本(管道:|
)。否则会报错。
so_df['fake'].where((so_df['date']=='20170107') | (so_df['date']=='20170109'), so_df['avg'])
以上检查两个日期。在 3 个或更多的情况下,您可能希望使用 isin
和列表:
so_df['fake'].where(so_df['date'].isin(['20170107', '20170109', '20170112']), so_df['avg'])
Out[42]:
0 375.5
1 260.0
2 331.0
3 267.5
4 397.0
5 355.0
6 89.0
7 320.5
8 38.0
9 395.5
10 197.0
11 67.0
12 498.5
13 409.5
14 525.5
Name: fake, dtype: float64
我们也可以使用Series.where()方法:
In [141]: so_df['avg'] = so_df['fake'] \
...: .where(so_df['date'].isin(['2017-01-07','2017-01-09']))
...: .fillna(so_df[['fake','fake2']].mean(1))
...:
In [142]: so_df
Out[142]:
date fake fake2 avg
0 2017-01-01 66 685 375.5
1 2017-01-02 29 491 260.0
2 2017-01-03 86 576 331.0
3 2017-01-04 75 460 267.5
4 2017-01-05 35 759 397.0
5 2017-01-06 97 613 355.0
6 2017-01-07 89 321 89.0
7 2017-01-08 89 552 320.5
8 2017-01-09 38 860 38.0
9 2017-01-10 17 774 395.5
10 2017-01-11 36 358 197.0
11 2017-01-12 67 810 438.5
12 2017-01-13 16 981 498.5
13 2017-01-14 44 775 409.5
14 2017-01-15 52 999 525.5
我一直在搜索,但还没有弄明白。希望有人能帮助这个 python 新手解决我的问题。
我正在尝试弄清楚如何在 python 中编写 if/then 语句并根据该 if/then 语句执行聚合。我的最终目标是说如果日期 = 1/7/2017 然后使用 "fake" 列中的值。如果 date = all else 然后将两列平均在一起。
这是我目前的情况:
import pandas as pd
import numpy as np
import datetime
np.random.seed(42)
dte=pd.date_range(start=datetime.date(2017,1,1), end= datetime.date(2017,1,15))
fake=np.random.randint(15,100, size=15)
fake2=np.random.randint(300,1000,size=15)
so_df=pd.DataFrame({'date':dte,
'fake':fake,
'fake2':fake2})
so_df['avg']= so_df[['fake','fake2']].mean(axis=1)
so_df.head()
让我们使用 np.where
:
so_df['avg'] = np.where(so_df['date'] == pd.to_datetime('2017-01-07'),
so_df['fake'], so_df[['fake',
'fake2']].mean(1))
输出:
date fake fake2 avg
0 2017-01-01 66 685 375.5
1 2017-01-02 29 491 260.0
2 2017-01-03 86 576 331.0
3 2017-01-04 75 460 267.5
4 2017-01-05 35 759 397.0
5 2017-01-06 97 613 355.0
6 2017-01-07 89 321 89.0
7 2017-01-08 89 552 320.5
8 2017-01-09 38 860 449.0
9 2017-01-10 17 774 395.5
10 2017-01-11 36 358 197.0
11 2017-01-12 67 810 438.5
12 2017-01-13 16 981 498.5
13 2017-01-14 44 775 409.5
14 2017-01-15 52 999 525.5
在 pandas 中执行 if-else 的一种方法是使用 np.where 里面有三个值,condition,if和else
so_df['avg']= np.where(so_df['date'] == '2017-01-07',so_df['fake'],so_df[['fake','fake2']].mean(axis=1))
date fake fake2 avg
0 2017-01-01 66 685 375.5
1 2017-01-02 29 491 260.0
2 2017-01-03 86 576 331.0
3 2017-01-04 75 460 267.5
4 2017-01-05 35 759 397.0
5 2017-01-06 97 613 355.0
6 2017-01-07 89 321 89.0
7 2017-01-08 89 552 320.5
8 2017-01-09 38 860 449.0
9 2017-01-10 17 774 395.5
10 2017-01-11 36 358 197.0
11 2017-01-12 67 810 438.5
12 2017-01-13 16 981 498.5
13 2017-01-14 44 775 409.5
14 2017-01-15 52 999 525.5
假设您已经计算了平均列:
so_df['fake'].where(so_df['date']=='20170107', so_df['avg'])
Out:
0 375.5
1 260.0
2 331.0
3 267.5
4 397.0
5 355.0
6 89.0
7 320.5
8 449.0
9 395.5
10 197.0
11 438.5
12 498.5
13 409.5
14 525.5
Name: fake, dtype: float64
如果不是,您可以用相同的计算替换列引用:
so_df['fake'].where(so_df['date']=='20170107', so_df[['fake','fake2']].mean(axis=1))
要检查多个日期,您需要使用 or 运算符的逐元素版本(管道:|
)。否则会报错。
so_df['fake'].where((so_df['date']=='20170107') | (so_df['date']=='20170109'), so_df['avg'])
以上检查两个日期。在 3 个或更多的情况下,您可能希望使用 isin
和列表:
so_df['fake'].where(so_df['date'].isin(['20170107', '20170109', '20170112']), so_df['avg'])
Out[42]:
0 375.5
1 260.0
2 331.0
3 267.5
4 397.0
5 355.0
6 89.0
7 320.5
8 38.0
9 395.5
10 197.0
11 67.0
12 498.5
13 409.5
14 525.5
Name: fake, dtype: float64
我们也可以使用Series.where()方法:
In [141]: so_df['avg'] = so_df['fake'] \
...: .where(so_df['date'].isin(['2017-01-07','2017-01-09']))
...: .fillna(so_df[['fake','fake2']].mean(1))
...:
In [142]: so_df
Out[142]:
date fake fake2 avg
0 2017-01-01 66 685 375.5
1 2017-01-02 29 491 260.0
2 2017-01-03 86 576 331.0
3 2017-01-04 75 460 267.5
4 2017-01-05 35 759 397.0
5 2017-01-06 97 613 355.0
6 2017-01-07 89 321 89.0
7 2017-01-08 89 552 320.5
8 2017-01-09 38 860 38.0
9 2017-01-10 17 774 395.5
10 2017-01-11 36 358 197.0
11 2017-01-12 67 810 438.5
12 2017-01-13 16 981 498.5
13 2017-01-14 44 775 409.5
14 2017-01-15 52 999 525.5