机器学习算法,说明哪些训练数据导致当前决策

machine learning algorithm that says which train data cause current decision

我需要一个学习模型,当我们用数据样本对其进行测试时,它会说明是哪个训练数据导致了答案。 有什么可以做到这一点吗? (我已经知道 KNN 会这样做) 谢谢

这不是一个措辞很好的问题:

Which train data cause the answer? I already know KNN will do this

KNN 会告诉你 K 个最近的邻居是什么,但 导致 答案的不只是那 K 个训练样本,还有所有其他训练样本距离更远. 机器学习的objective是对整个训练数据集进行泛化,所以训练数据集中的所有样本(经过异常值过滤、数据集缩减步骤)导致答案。

如果你的问题是'Which class of machine learning algorithms makes a decision by comparing a new instance to instances seen in the training data, and can list the training examples which most strongly informed the decision?',答案是:基于实例的学习https://en.wikipedia.org/wiki/Instance-based_learning (例如 KNN、内核机器、RBF)

寻找generative models "It asks the question: based on generation assumptions, which category is most likely to generate this signal?"