递归:具有分布的账户价值

Recursion: account value with distributions

更新:不确定如果没有某种形式的 , but np.where will not work here. If the answer is, "you can't", then so be it. If it can be done, it may use something from scipy.signal.

是否可行

我想对下面代码中的循环进行矢量化,但由于输出的递归性质,我不确定如何进行矢量化。

我当前设置的遍历:

以起始金额(100 万美元)和季度美元分配(5,000 美元)为例:

dist = 5000.
v0 = float(1e6)

每月生成一些随机数 security/account returns(小数形式):

r = pd.Series(np.random.rand(12) * .01,
              index=pd.date_range('2017', freq='M', periods=12))

创建一个空系列来保存每月帐户值:

value = pd.Series(np.empty_like(r), index=r.index)

将 "start month" 添加到 value。此标签将包含 v0.

from pandas.tseries import offsets
value = (value.append(Series(v0, index=[value.index[0] - offsets.MonthEnd(1)]))
              .sort_index())

我想摆脱的循环在这里:

for date in value.index[1:]:
    if date.is_quarter_end:
        value.loc[date] = value.loc[date - offsets.MonthEnd(1)] \
                        * (1 + r.loc[date]) - dist
    else:
        value.loc[date] = value.loc[date - offsets.MonthEnd(1)] \
                        * (1 + r.loc[date]) 

组合代码:

import pandas as pd
from pandas.tseries import offsets
from pandas import Series
import numpy as np

dist = 5000.
v0 = float(1e6)
r = pd.Series(np.random.rand(12) * .01, index=pd.date_range('2017', freq='M', periods=12))
value = pd.Series(np.empty_like(r), index=r.index)
value = (value.append(Series(v0, index=[value.index[0] - offsets.MonthEnd(1)])).sort_index())
for date in value.index[1:]:
    if date.is_quarter_end:
        value.loc[date] = value.loc[date - offsets.MonthEnd(1)] * (1 + r.loc[date]) - dist
    else:
        value.loc[date] = value.loc[date - offsets.MonthEnd(1)] * (1 + r.loc[date]) 

在伪代码中,循环所做的只是:

for each date in index of value:
    if the date is not a quarter end:
        multiply previous value by (1 + r) for that month
    if the date is a quarter end:
        multiply previous value by (1 + r) for that month and subtract dist

问题是,我目前看不到矢量化是如何实现的,因为连续值取决于前一个月是否进行了分布。我得到了想要的结果,但对于更高频率的数据或更长的时间段来说效率很低。

好的...我正在尝试这个。

import numpy as np 
import pandas as pd

#Define a generator for accumulating deposits and returns
def gen(lst):
    acu = 0
    for r, v in lst:
        yield acu * (1 + r) +v
        acu *= (1 + r)
        acu += v


dist = 5000.
v0 = float(1e6)
random_returns = np.random.rand(12) * 0.1

#Create the index. 
index=pd.date_range('2016-12-31', freq='M', periods=13)
#Generate a return so that the value at i equals the return from i-1 to i
r = pd.Series(np.insert(random_returns, 0,0), index=index, name='Return')
#Generate series with deposits and withdrawals
w = [-dist if is_q_end else 0 for is_q_end in index [1:].is_quarter_end]
d = pd.Series(np.insert(w, 0, v0), index=index, name='Movements')

df = pd.concat([r, d], axis=1)
df['Value'] = list(gen(zip(df['Return'], df['Movements'])))

现在,你的代码

#Generate some random security/account returns (decimal form) at monthly freq:
r = pd.Series(random_returns,
          index=pd.date_range('2017', freq='M', periods=12))
#Create an empty Series that will hold the monthly account values:
value = pd.Series(np.empty_like(r), index=r.index)
#Add a "start month" to value. This label will contain v0.
from pandas.tseries import offsets
value = (value.append(pd.Series(v0, index=[value.index[0] - offsets.MonthEnd(1)])).sort_index())
#The loop I'd like to get rid of is here:

def loopy(value) :
    for date in value.index[1:]:
        if date.is_quarter_end:
            value.loc[date] = value.loc[date - offsets.MonthEnd(1)] \
                           * (1 + r.loc[date]) - dist
        else:
           value.loc[date] = value.loc[date - offsets.MonthEnd(1)] \
                           * (1 + r.loc[date]) 

   return value

以及比较和计时

(loopy(value)==list(gen(zip(r, d)))).all()
Out[11]: True

returns 相同的结果

%timeit list(gen(zip(r, d)))
%timeit loopy(value)
10000 loops, best of 3: 72.4 µs per loop
100 loops, best of 3: 5.37 ms per loop

而且似乎速度更快一些。希望对你有帮助。

您可以使用以下代码:

cum_r = (1 + r).cumprod()
result = cum_r * v0
for date in r.index[r.index.is_quarter_end]:
     result[date:] -= cum_r[date:] * (dist / cum_r.loc[date])

你会:

  • 每月累计 1 个产品 returns。
  • 1 向量与标量的乘法v0
  • n 向量与标量的乘法 dist / cum_r.loc[date]
  • n向量减法

其中 n 是季度结束的次数。

基于这段代码我们可以进一步优化:

cum_r = (1 + r).cumprod()
t = (r.index.is_quarter_end / cum_r).cumsum()
result = cum_r * (v0 - dist * t)

也就是

  • 1 累计产品(1 + r).cumprod()
  • 两个系列之间的 1 个分区 r.index.is_quarter_end / cum_r
  • 上述除法的1个累加和
  • 1 上述总和与标量的乘积 dist
  • 1 标量 v0dist * t
  • 的减法
  • 1 cum_rv0 - dist * t
  • 的点乘法