编码 MNIST 教程时出现 InvalidArgumentError

InvalidArgumentError while coding MNIST tutorial

这些是我的第一个 tensorflow 步骤,如果其他人遇到与我相同的问题,我想知道是否有解决方法。

我正在编写 mnist 教程,我当前的代码片段是:

#placeholder for input
x = tf.placeholder(tf.float32,[None,784]) # None means a dimension can be of any length

#Weights for the model: 784 pixel maps to ten results
W = tf.Variable(tf.zeros([784,10]))

#bias
b = tf.Variable( tf.zeros([10])) 

#implementing the model
y = tf.matmul(x,W) + b

#implementing cross-entropy
y_ = tf.placeholder(tf.float32,[None,10])

#cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
cross_entropy = tf.reduce_mean(
     tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess=tf.InteractiveSession()
tf.global_variables_initializer().run()

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
for _ in range(1000):
    batch_xs, batch_xy64 = mnist.train.next_batch(100)
    batch_xy = batch_xy64.astype(np.float32)
    sess.run(train_step , feed_dict={x:batch_xs,y:batch_xy})

correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

print (sess.run(accuracy,feed_dict={x:mnist.test.images, y_:mnist.test.labels}))

首先,我尝试 cross_entropy MNIST 描述和提供的源代码中的描述,这没有区别。

请注意,我明确尝试转换 batch_xy,因为它作为浮点数 64 返回。

这似乎也是问题所在,因为在 session.run float32 张量和变量中似乎是预期的。

就我看到的调试代码而言,mnist 中的标签返回为 float64 - 也许这解释了我的错误:

...
      File "/home/braunalx/python-workspace/LearnTensorFlow/firstSteps/MNIST_Start.py", line 40, in mnist_run
    y_ = tf.placeholder(tf.float32,[None,10])


     File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 1548, in placeholder
    return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
...
    InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,10]
     [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[?,10], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

提供的mnist数据有问题吗?

该错误表明您没有为所需的占位符提供值。在 sess.run(train_step , feed_dict={x:batch_xs,y:batch_xy}).

这一行用 y_ 替换 y