为什么用 monix 或 akka-streams 将 class A 映射到 class B 这么慢?

Why mapping a class A to class B with monix or akka-streams is so slow?

我已经用 monix 和 akka-streams 对 List[ClassA] 到 List[ClassB] 的映射进行了基准测试,但我不明白为什么这么慢。

我尝试了不同的映射方式,这是 JMH 的结果:

[info] Benchmark                                    Mode  Cnt    Score    Error  Units
[info] MappingBenchmark.akkaLoadBalanceMap            ss   20  742,626 â–’  4,853  ms/op
[info] MappingBenchmark.akkaMapAsyncFold              ss   20  480,460 â–’  8,493  ms/op
[info] MappingBenchmark.akkaMapAsyncFoldAsync         ss   20  331,398 â–’ 10,490  ms/op
[info] MappingBenchmark.akkaMapFold                   ss   20  713,500 â–’  7,394  ms/op
[info] MappingBenchmark.akkaMapFoldAsync              ss   20  313,275 â–’  8,716  ms/op
[info] MappingBenchmark.map                           ss   20    0,567 â–’  0,175  ms/op
[info] MappingBenchmark.monixBatchedObservables       ss   20  259,736 â–’  5,939  ms/op
[info] MappingBenchmark.monixMapAsyncFoldLeft         ss   20  456,310 â–’  5,225  ms/op
[info] MappingBenchmark.monixMapAsyncFoldLeftAsync    ss   20  795,345 â–’  5,443  ms/op
[info] MappingBenchmark.monixMapFoldLeft              ss   20  247,172 â–’  5,342  ms/op
[info] MappingBenchmark.monixMapFoldLeftAsync         ss   20  478,840 â–’ 25,249  ms/op
[info] MappingBenchmark.monixTaskGather               ss   20    6,707 â–’  2,176  ms/op
[info] MappingBenchmark.parMap                        ss   20    1,257 â–’  0,831  ms/op

代码如下:

package benches

import java.util.concurrent.TimeUnit

import akka.NotUsed
import akka.actor.ActorSystem
import akka.stream.{ActorMaterializer, ClosedShape, UniformFanInShape, UniformFanOutShape}
import akka.stream.scaladsl.{Balance, Flow, GraphDSL, Keep, Merge, RunnableGraph, Sink, Source}
import org.openjdk.jmh.annotations._

import scala.concurrent.{Await, Future}
import scala.concurrent.duration.Duration

@OutputTimeUnit(TimeUnit.MILLISECONDS)
@BenchmarkMode(Array(Mode.SingleShotTime))
@Warmup(iterations = 20)
@Measurement(iterations = 20)
@Fork(value = 1, jvmArgs = Array("-server", "-Xmx8g"))
@Threads(1)
class MappingBenchmark {
  import monix.eval._
  import monix.reactive._
  import monix.execution.Scheduler.Implicits.global

  def list: List[ClassA] = (1 to 10000).map(ClassA).toList
  //    val l = (1 to 135368).map(Offre).toList

  // ##### SCALA ##### //

  @Benchmark
  def map: List[ClassB] = list.map(o => ClassB(o, o))

  @Benchmark
  def parMap: List[ClassB] = list.par.map(o => ClassB(o, o)).toList

  // ##### MONIX ##### //

  @Benchmark
  def monixTaskGather: List[ClassB] = {
    val task: Task[List[ClassB]] = Task.gatherUnordered(list.map(o => Task(ClassB(o,o))))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixBatchedObservables: List[ClassB] = {
    val task: Task[List[ClassB]] =
      Observable.fromIterable(list)
        .bufferIntrospective(256)
        .flatMap{items =>
          val tasks = items.map(o => Task(ClassB(o,o)))
          val batches = tasks.sliding(10,10).map(b => Task.gatherUnordered(b))
          val aggregate: Task[Iterator[ClassB]] = Task.sequence(batches).map(_.flatten)
          Observable.fromTask(aggregate).flatMap(i => Observable.fromIterator(i))
        }.consumeWith(Consumer.foldLeft(List[ClassB]())(_ :+ _))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapFoldLeft: List[ClassB] = {
    val task: Task[List[ClassB]] = Observable.fromIterable(list).map(o => ClassB(o, o)).consumeWith(Consumer.foldLeft(List[ClassB]())(_ :+ _))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapFoldLeftAsync: List[ClassB] = {
    val task: Task[List[ClassB]] = Observable.fromIterable(list).map(o => ClassB(o, o)).consumeWith(Consumer.foldLeftAsync(List[ClassB]())((l, o) => Task(l :+ o)))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapAsyncFoldLeft: List[ClassB] = {
    val task: Task[List[ClassB]] = Observable.fromIterable(list).mapAsync(4)(o => Task(ClassB(o, o))).consumeWith(Consumer.foldLeft(List[ClassB]())(_ :+ _))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapAsyncFoldLeftAsync: List[ClassB] = {
    val task: Task[List[ClassB]] = Observable.fromIterable(list).mapAsync(4)(o => Task(ClassB(o, o))).consumeWith(Consumer.foldLeftAsync(List[ClassB]())((l, o) => Task(l :+ o)))
    Await.result(task.runAsync, Duration.Inf)
  }

  // ##### AKKA-STREAM ##### //

  @Benchmark
  def akkaMapFold: List[ClassB] = {
    val graph: RunnableGraph[Future[List[ClassB]]] = Source(list).map(o => ClassB(o,o)).toMat(Sink.fold(List[ClassB]())(_ :+ _))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapFoldAsync: List[ClassB] = {
    val graph: RunnableGraph[Future[List[ClassB]]] = Source(list).map(o => ClassB(o,o)).toMat(Sink.foldAsync(List[ClassB]())((l, o) => Future(l :+ o)))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapAsyncFold: List[ClassB] = {
    def graph: RunnableGraph[Future[List[ClassB]]] = Source(list).mapAsync(4)(o => Future(ClassB(o,o))).async.toMat(Sink.fold(List[ClassB]())(_ :+ _))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapAsyncFoldAsync: List[ClassB] = {
    def graph: RunnableGraph[Future[List[ClassB]]] = Source(list).mapAsync(4)(o => Future(ClassB(o,o))).async.toMat(Sink.foldAsync(List[ClassB]())((l, o) => Future(l :+ o)))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaLoadBalanceMap: List[ClassB] = {
    def graph: RunnableGraph[Future[List[ClassB]]] = {
      val sink: Sink[ClassB, Future[List[ClassB]]] = Sink.fold(List[ClassB]())(_ :+ _)
      RunnableGraph.fromGraph[Future[List[ClassB]]](GraphDSL.create(sink) { implicit builder =>
        sink =>
          import GraphDSL.Implicits._
          val balance: UniformFanOutShape[ClassA, ClassA] = builder.add(Balance[ClassA](4))
          val merge: UniformFanInShape[ClassB, ClassB] = builder.add(Merge[ClassB](4))
          val mapClassB: Flow[ClassA, ClassB, NotUsed] = Flow[ClassA].map(o => ClassB(o,o))
          Source(list) ~> balance
          (1 to 4).foreach{ i =>
            balance ~> mapClassB.async ~> merge
          }
          merge ~> sink
          ClosedShape
      })
    }
    runAkkaGraph(graph)
  }

  private def runAkkaGraph(g:RunnableGraph[Future[List[ClassB]]]): List[ClassB] = {
    implicit val actorSystem = ActorSystem("app")
    implicit val actorMaterializer = ActorMaterializer()
    val eventualBs = g.run()
    val res = Await.result(eventualBs, Duration.Inf)
    actorSystem.terminate()
    res
  }
}

case class ClassA(a:Int)
case class ClassB(o:ClassA, o2:ClassA)

当初始集合较大时,基准结果变得更差。

我想知道我的错误是什么。

感谢您分享您的知识!

此致

我已经更新了代码,板凳真的比以前更好了。差异与 List 运算符有关。事实上,第一个版本使用的是 append 而不是 preprend。由于 List 是一个链表,它必须遍历元素才能添加新元素。由于懒惰,我想使用 _ 运算符,但我不应该使用。

package benches

import java.util.concurrent.TimeUnit

import akka.NotUsed
import akka.actor.ActorSystem
import akka.stream.{ActorMaterializer, ClosedShape, UniformFanInShape, UniformFanOutShape}
import akka.stream.scaladsl.{Balance, Flow, GraphDSL, Keep, Merge, RunnableGraph, Sink, Source}
import org.openjdk.jmh.annotations._

import scala.concurrent.{Await, Future}
import scala.concurrent.duration.Duration
import scala.collection.immutable.Seq

@OutputTimeUnit(TimeUnit.MILLISECONDS)
@BenchmarkMode(Array(Mode.SingleShotTime))
@Warmup(iterations = 20)
@Measurement(iterations = 20)
@Fork(value = 1, jvmArgs = Array("-server", "-Xmx8g"))
@Threads(1)
class MappingBenchmark {
  import monix.eval._
  import monix.reactive._
  import monix.execution.Scheduler.Implicits.global

  def list: Seq[ClassA] = (1 to 10000).map(ClassA).toList
  //    val l = (1 to 135368).map(Offre).toList

  // ##### SCALA ##### //

  def foldClassB = (l:List[ClassB], o:ClassB) => o +: l

  @Benchmark
  def map: Seq[ClassB] = list.map(o => ClassB(o, o))

  @Benchmark
  def parMap: Seq[ClassB] = list.par.map(o => ClassB(o, o)).toList

  // ##### MONIX ##### //

  @Benchmark
  def monixTaskGather: Seq[ClassB] = {
    val task: Task[Seq[ClassB]] = Task.gatherUnordered(list.map(o => Task(ClassB(o,o))))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixBatchedObservables: Seq[ClassB] = {
    val task: Task[Seq[ClassB]] =
      Observable.fromIterable(list)
        .bufferIntrospective(256)
        .flatMap{items =>
          val tasks = items.map(o => Task(ClassB(o,o)))
          val batches = tasks.sliding(10,10).map(b => Task.gatherUnordered(b))
          val aggregate: Task[Iterator[ClassB]] = Task.sequence(batches).map(_.flatten)
          Observable.fromTask(aggregate).flatMap(i => Observable.fromIterator(i))
        }.consumeWith(Consumer.foldLeft(List[ClassB]())(foldClassB))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapFoldLeft: Seq[ClassB] = {
    val task: Task[Seq[ClassB]] = Observable.fromIterable(list).map(o => ClassB(o, o)).consumeWith(Consumer.foldLeft(List[ClassB]())(foldClassB))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapFoldLeftAsync: Seq[ClassB] = {
    val task: Task[Seq[ClassB]] = Observable.fromIterable(list).map(o => ClassB(o, o)).consumeWith(Consumer.foldLeftAsync(List[ClassB]())((l, o) => Task(o +: l)))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapAsyncFoldLeft: Seq[ClassB] = {
    val task: Task[Seq[ClassB]] = Observable.fromIterable(list).mapAsync(4)(o => Task(ClassB(o, o))).consumeWith(Consumer.foldLeft(List[ClassB]())(foldClassB))
    Await.result(task.runAsync, Duration.Inf)
  }

  @Benchmark
  def monixMapAsyncFoldLeftAsync: Seq[ClassB] = {
    val task: Task[Seq[ClassB]] = Observable.fromIterable(list).mapAsync(4)(o => Task(ClassB(o, o))).consumeWith(Consumer.foldLeftAsync(List[ClassB]())((l, o) => Task(o +: l)))
    Await.result(task.runAsync, Duration.Inf)
  }

  // ##### AKKA-STREAM ##### //

  @Benchmark
  def akkaMapFold: Seq[ClassB] = {
    val graph: RunnableGraph[Future[List[ClassB]]] = Source(list).map(o => ClassB(o,o)).toMat(Sink.fold(List[ClassB]())(foldClassB))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapFoldAsync: Seq[ClassB] = {
    val graph: RunnableGraph[Future[List[ClassB]]] = Source(list).map(o => ClassB(o,o)).toMat(Sink.foldAsync(List[ClassB]())((l, o) => Future(o +: l)))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapSeq: Seq[ClassB] = {
    val graph = Source(list).map(o => ClassB(o,o)).toMat(Sink.seq)(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapAsyncFold: Seq[ClassB] = {
    def graph: RunnableGraph[Future[Seq[ClassB]]] = Source(list).mapAsync(4)(o => Future(ClassB(o,o))).async.toMat(Sink.fold(List[ClassB]())(foldClassB))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapAsyncFoldAsync: Seq[ClassB] = {
    def graph: RunnableGraph[Future[Seq[ClassB]]] = Source(list).mapAsync(4)(o => Future(ClassB(o,o))).async.toMat(Sink.foldAsync(List[ClassB]())((l, o) => Future(o +: l)))(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaMapAsyncSeq: Seq[ClassB] = {
    val graph = Source(list).mapAsync(4)(o => Future(ClassB(o,o))).toMat(Sink.seq)(Keep.right)
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaLoadBalanceMap: Seq[ClassB] = {
    def graph: RunnableGraph[Future[Seq[ClassB]]] = {
      val sink: Sink[ClassB, Future[Seq[ClassB]]] = Sink.fold(List[ClassB]())(foldClassB)
      RunnableGraph.fromGraph[Future[Seq[ClassB]]](GraphDSL.create(sink) { implicit builder =>
        sink =>
          import GraphDSL.Implicits._
          val balance: UniformFanOutShape[ClassA, ClassA] = builder.add(Balance[ClassA](4))
          val merge: UniformFanInShape[ClassB, ClassB] = builder.add(Merge[ClassB](4))
          val mapClassB: Flow[ClassA, ClassB, NotUsed] = Flow[ClassA].map(o => ClassB(o,o))
          Source(list) ~> balance
          (1 to 4).foreach{ i =>
            balance ~> mapClassB.async ~> merge
          }
          merge ~> sink
          ClosedShape
      })
    }
    runAkkaGraph(graph)
  }

  @Benchmark
  def akkaLoadBalanceMapSeq: Seq[ClassB] = {
    def graph: RunnableGraph[Future[Seq[ClassB]]] = {
      val sink: Sink[ClassB, Future[Seq[ClassB]]] = Sink.seq
      RunnableGraph.fromGraph[Future[Seq[ClassB]]](GraphDSL.create(sink) { implicit builder =>
        sink =>
          import GraphDSL.Implicits._
          val balance: UniformFanOutShape[ClassA, ClassA] = builder.add(Balance[ClassA](4))
          val merge: UniformFanInShape[ClassB, ClassB] = builder.add(Merge[ClassB](4))
          val mapClassB: Flow[ClassA, ClassB, NotUsed] = Flow[ClassA].map(o => ClassB(o,o))
          Source(list) ~> balance
          (1 to 4).foreach{ i =>
            balance ~> mapClassB.async ~> merge
          }
          merge ~> sink
          ClosedShape
      })
    }
    runAkkaGraph(graph)
  }

  private def runAkkaGraph(g:RunnableGraph[Future[Seq[ClassB]]]): Seq[ClassB] = {
    implicit val actorSystem = ActorSystem("app")
    implicit val actorMaterializer = ActorMaterializer()
    val eventualBs = g.run()
    val res = Await.result(eventualBs, Duration.Inf)
    actorSystem.terminate()
    res
  }
}

case class ClassA(a:Int)
case class ClassB(o:ClassA, o2:ClassA)

此更新 class 的结果是:

[info] Benchmark                                    Mode  Cnt   Score   Error  Units
[info] MappingBenchmark.akkaLoadBalanceMap            ss   20  19,052 â–’ 3,779  ms/op
[info] MappingBenchmark.akkaLoadBalanceMapSeq         ss   20  16,115 â–’ 3,232  ms/op
[info] MappingBenchmark.akkaMapAsyncFold              ss   20  20,862 â–’ 3,127  ms/op
[info] MappingBenchmark.akkaMapAsyncFoldAsync         ss   20  26,994 â–’ 4,010  ms/op
[info] MappingBenchmark.akkaMapAsyncSeq               ss   20  19,399 â–’ 7,089  ms/op
[info] MappingBenchmark.akkaMapFold                   ss   20  12,132 â–’ 4,111  ms/op
[info] MappingBenchmark.akkaMapFoldAsync              ss   20  22,652 â–’ 3,802  ms/op
[info] MappingBenchmark.akkaMapSeq                    ss   20  10,894 â–’ 3,114  ms/op
[info] MappingBenchmark.map                           ss   20   0,625 â–’ 0,193  ms/op
[info] MappingBenchmark.monixBatchedObservables       ss   20   9,175 â–’ 4,080  ms/op
[info] MappingBenchmark.monixMapAsyncFoldLeft         ss   20  11,724 â–’ 4,458  ms/op
[info] MappingBenchmark.monixMapAsyncFoldLeftAsync    ss   20  14,174 â–’ 6,962  ms/op
[info] MappingBenchmark.monixMapFoldLeft              ss   20   1,057 â–’ 0,960  ms/op
[info] MappingBenchmark.monixMapFoldLeftAsync         ss   20   9,638 â–’ 4,910  ms/op
[info] MappingBenchmark.monixTaskGather               ss   20   7,065 â–’ 2,428  ms/op
[info] MappingBenchmark.parMap                        ss   20   1,392 â–’ 0,923  ms/op

如果我们可以在 运行 流之前使用 scala 进行映射,似乎仍然更快。

关于异步处理/并行性的注意事项...通常,在并行处理内容时,您最终会遇到大量 CPU 绑定的开销来同步结果。

开销实际上可能非常大,以至于它可以抵消您从多个 CPU 内核并行工作中获得的时间收益。

您还应该熟悉 Amdahl's Law。看看这些数字:在 75% 的并行部分,您仅用 4 个处理器就可以达到最大加速。并行部分为 50%,您仅需 2 个处理器即可达到最大加速。

这只是理论上的限制,因为处理器之间还有共享内存同步,这可能会变得非常混乱;基本上,处理器针对顺序执行进行了优化。引入并发问题,您需要使用内存屏障强制排序,这会使许多 CPU 优化无效。因此,您可以达到负加速,正如您实际在测试中看到的那样。

所以你在测试异步/并行映射,但测试基本上什么都不做,还不如用身份函数测试,这几乎是一回事。换句话说,您正在进行的测试及其结果几乎在实践中毫无用处

附带说明一下,这也是我从不喜欢 "parallel collections" 这个想法的原因。这个概念是有缺陷的,因为你只能将并行集合用于纯粹的 CPU 绑定的东西(即没有 I/O,没有实际的异步东西),这可以说它可以进行一些计算,除了那:

  1. 出于许多目的,并行集合的使用比使用单个 CPU 和
  2. 的普通运算符慢
  3. 如果你确实有 CPU 的工作并且你需要最大限度地使用你的硬件资源,那么 "parallel collections" 在他们当前的化身中实际上是错误的抽象,因为 "hardware" 这些天包括 GPU

换句话说,并行集合没有有效地使用硬件资源,因为它们完全忽略了 GPU 支持并且完全不适合混合 CPU - I/O 任务,因为它们缺乏异步支持。

我觉得有必要提及这一点,因为人们常常认为在他们的代码上擦一些“并行”精灵尘会使它 运行 更快,但很多有时不会。

当你有 I/O 绑定的任务(当然混合了 CPU 绑定的任务)时,并行性非常有效,在这种情况下,CPU 开销就不那么重要了,因为处理时间将由 I/O.

决定

PS:Scala 集合的简单映射应该更快,因为它是严格的并且(取决于集合类型)它使用数组支持的缓冲区,因此不会丢弃 CPU 缓存。 Monix 的 .map 与 Scala 的 Iterable.map 具有相同的开销,或者说接近于零的开销,但是它的应用程序是惰性的并且引入了一些我们无法摆脱的装箱开销,因为 JVM 没有'专攻泛型。

虽然在实践中速度非常快;-)