在 golang 正则表达式中获取子组的命名列表
Get named list of subgroup in golang regex
我正在寻找一个 returns a map[string]interface{}
的函数,其中 interface{}
可以是一个切片、一个 map[string]interface{}
或一个值。
我的用例是像下面这样解析 WKT 几何图形并检索点值;甜甜圈多边形示例:
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
正则表达式(出于可读性目的,我自愿设置 \d 只匹配整数):
(POLYGON \(
(?P<polygons>\(
(?P<points>(?P<point>(\d \d), ){3,})
(?P<last_point>\d \d )\),)*
(?P<last_polygon>\(
(?P<points>(?P<point>(\d \d), ){3,})
(?P<last_point>\d \d)\))\)
)
我有一个函数(从 SO 复制)可以检索一些信息,但它对嵌套组和组列表不是很好:
func getRegexMatchParams(reg *regexp.Regexp, url string) (paramsMap map[string]string) {
match := reg.FindStringSubmatch(url)
paramsMap = make(map[string]string)
for i, name := range reg.SubexpNames() {
if i > 0 && i <= len(match) {
paramsMap[name] = match[i]
}
}
return match
}
看来point
组只得到1分。
example on playground
[编辑] 我想要的结果是这样的:
map[string]interface{}{
"polygons": map[string]interface{} {
"points": []interface{}{
{map[string]string{"point": "0 0"}},
{map[string]string{"point": "0 10"}},
{map[string]string{"point": "10 10"}},
{map[string]string{"point": "10 0"}},
},
"last_point": "0 0",
},
"last_polygon": map[string]interface{} {
"points": []interface{}{
{map[string]string{"point": "3 3"}},
{map[string]string{"point": "3 7"}},
{map[string]string{"point": "7 7"}},
{map[string]string{"point": "7 3"}},
},
"last_point": "3 3",
}
}
所以我可以将它进一步用于不同的目的,例如查询数据库并验证每个多边形的 last_point = points[0]。
尝试在正则表达式中添加一些空格。
另请注意,此引擎不会保留所有
在像 (a|b|c)+
这样的量化外部分组中,该组将仅包含它找到的最后一个 a 或 b 或 c。
而且,您的正则表达式可以简化为
(POLYGON\s*\((?P<polygons>\(\s*(?P<points>(?P<point>\s*(\d+\s+\d+)\s*,){3,})\s*(?P<last_point>\d+\s+\d+)\s*\)(?:\s*,\s*|\s*\)))+)
https://play.golang.org/p/rLaaEa_7GX
原文:
(POLYGON\s*\((?P<polygons>\(\s*(?P<points>(?P<point>\s*(\d+\s+\d+)\s*,){3,})\s*(?P<last_point>\d+\s+\d+)\s*\),)*(?P<last_polygon>\(\s*(?P<points>(?P<point>\s*(\d+\s+\d+)\s*,){3,})\s*(?P<last_point>\d+\s+\d+)\s*\))\s*\))
https://play.golang.org/p/rZgJYPDMzl
请参阅下文了解这些组包含的内容。
( # (1 start)
POLYGON \s* \(
(?P<polygons> # (2 start)
\( \s*
(?P<points> # (3 start)
(?P<point> # (4 start)
\s*
( \d+ \s+ \d+ ) # (5)
\s*
,
){3,} # (4 end)
) # (3 end)
\s*
(?P<last_point> \d+ \s+ \d+ ) # (6)
\s* \),
)* # (2 end)
(?P<last_polygon> # (7 start)
\( \s*
(?P<points> # (8 start)
(?P<point> # (9 start)
\s*
( \d+ \s+ \d+ ) # (10)
\s*
,
){3,} # (9 end)
) # (8 end)
\s*
(?P<last_point> \d+ \s+ \d+ ) # (11)
\s* \)
) # (7 end)
\s* \)
) # (1 end)
输入
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
输出
** Grp 0 - ( pos 0 , len 65 )
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
** Grp 1 - ( pos 0 , len 65 )
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
** Grp 2 [polygons] - ( pos 9 , len 30 )
(0 0, 0 10, 10 10, 10 0, 0 0),
** Grp 3 [points] - ( pos 10 , len 23 )
0 0, 0 10, 10 10, 10 0,
** Grp 4 [point] - ( pos 27 , len 6 )
10 0,
** Grp 5 - ( pos 28 , len 4 )
10 0
** Grp 6 [last_point] - ( pos 34 , len 3 )
0 0
** Grp 7 [last_polygon] - ( pos 39 , len 25 )
(3 3, 3 7, 7 7, 7 3, 3 3)
** Grp 8 [points] - ( pos 40 , len 19 )
3 3, 3 7, 7 7, 7 3,
** Grp 9 [point] - ( pos 54 , len 5 )
7 3,
** Grp 10 - ( pos 55 , len 3 )
7 3
** Grp 11 [last_point] - ( pos 60 , len 3 )
3 3
可能的解决方案
并非不可能。它只需要几个额外的步骤。
(顺便说一句,WKT 没有可以为您解析的库吗?)
现在,我不知道你的语言能力,所以这只是一个通用的方法。
1。验证您正在解析的表单。
这将验证 return 所有多边形集 作为 All_Polygons
组中的单个字符串。
目标POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
POLYGON\s*\((?P<All_Polygons>(?:\(\s*\d+\s+\d+(?:\s*,\s*\d+\s+\d+){2,}\s*\))(?:\s*,\(\s*\d+\s+\d+(?:\s*,\s*\d+\s+\d+){2,}\s*\))*)\s*\)
** Grp 1 [All_Polygons] - ( pos 9 , len 55 )
(0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3)
2。如果 1 成功,则使用 All_Polygons
字符串的输出设置循环匹配。
目标(0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3)
(?:\(\s*(?P<Single_Poly_All_Pts>\d+\s+\d+(?:\s*,\s*\d+\s+\d+){2,})\s*\))
这一步相当于查找所有类型的匹配项。它应该匹配单个多边形所有点的连续值,returned in Single_Poly_All_Pts
group string。
这将为您提供这 2 个单独的匹配项,它们可以放入具有 2 个值字符串的临时数组中:
** Grp 1 [Single_Poly_All_Pts] - ( pos 1 , len 27 )
0 0, 0 10, 10 10, 10 0, 0 0
** Grp 1 [Single_Poly_All_Pts] - ( pos 31 , len 23 )
3 3, 3 7, 7 7, 7 3, 3 3
3。如果 2 成功,则使用步骤 2 的临时数组输出设置循环匹配。
这将为您提供每个多边形的 个 点。
(?P<Single_Point>\d+\s+\d+)
这又是一个循环匹配(或查找所有类型的匹配)。对于每个数组元素
(多边形),这将产生单独的点。
目标[元素 1] 0 0, 0 10, 10 10, 10 0, 0 0
** Grp 1 [Single_Point] - ( pos 0 , len 3 )
0 0
** Grp 1 [Single_Point] - ( pos 5 , len 4 )
0 10
** Grp 1 [Single_Point] - ( pos 11 , len 5 )
10 10
** Grp 1 [Single_Point] - ( pos 18 , len 4 )
10 0
** Grp 1 [Single_Point] - ( pos 24 , len 3 )
0 0
并且,
目标[元素 2] 3 3, 3 7, 7 7, 7 3, 3 3
** Grp 1 [Single_Point] - ( pos 0 , len 3 )
3 3
** Grp 1 [Single_Point] - ( pos 5 , len 3 )
3 7
** Grp 1 [Single_Point] - ( pos 10 , len 3 )
7 7
** Grp 1 [Single_Point] - ( pos 15 , len 3 )
7 3
** Grp 1 [Single_Point] - ( pos 20 , len 3 )
3 3
我正在寻找一个 returns a map[string]interface{}
的函数,其中 interface{}
可以是一个切片、一个 map[string]interface{}
或一个值。
我的用例是像下面这样解析 WKT 几何图形并检索点值;甜甜圈多边形示例:
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
正则表达式(出于可读性目的,我自愿设置 \d 只匹配整数):
(POLYGON \(
(?P<polygons>\(
(?P<points>(?P<point>(\d \d), ){3,})
(?P<last_point>\d \d )\),)*
(?P<last_polygon>\(
(?P<points>(?P<point>(\d \d), ){3,})
(?P<last_point>\d \d)\))\)
)
我有一个函数(从 SO 复制)可以检索一些信息,但它对嵌套组和组列表不是很好:
func getRegexMatchParams(reg *regexp.Regexp, url string) (paramsMap map[string]string) {
match := reg.FindStringSubmatch(url)
paramsMap = make(map[string]string)
for i, name := range reg.SubexpNames() {
if i > 0 && i <= len(match) {
paramsMap[name] = match[i]
}
}
return match
}
看来point
组只得到1分。
example on playground
[编辑] 我想要的结果是这样的:
map[string]interface{}{
"polygons": map[string]interface{} {
"points": []interface{}{
{map[string]string{"point": "0 0"}},
{map[string]string{"point": "0 10"}},
{map[string]string{"point": "10 10"}},
{map[string]string{"point": "10 0"}},
},
"last_point": "0 0",
},
"last_polygon": map[string]interface{} {
"points": []interface{}{
{map[string]string{"point": "3 3"}},
{map[string]string{"point": "3 7"}},
{map[string]string{"point": "7 7"}},
{map[string]string{"point": "7 3"}},
},
"last_point": "3 3",
}
}
所以我可以将它进一步用于不同的目的,例如查询数据库并验证每个多边形的 last_point = points[0]。
尝试在正则表达式中添加一些空格。
另请注意,此引擎不会保留所有
在像 (a|b|c)+
这样的量化外部分组中,该组将仅包含它找到的最后一个 a 或 b 或 c。
而且,您的正则表达式可以简化为
(POLYGON\s*\((?P<polygons>\(\s*(?P<points>(?P<point>\s*(\d+\s+\d+)\s*,){3,})\s*(?P<last_point>\d+\s+\d+)\s*\)(?:\s*,\s*|\s*\)))+)
https://play.golang.org/p/rLaaEa_7GX
原文:
(POLYGON\s*\((?P<polygons>\(\s*(?P<points>(?P<point>\s*(\d+\s+\d+)\s*,){3,})\s*(?P<last_point>\d+\s+\d+)\s*\),)*(?P<last_polygon>\(\s*(?P<points>(?P<point>\s*(\d+\s+\d+)\s*,){3,})\s*(?P<last_point>\d+\s+\d+)\s*\))\s*\))
https://play.golang.org/p/rZgJYPDMzl
请参阅下文了解这些组包含的内容。
( # (1 start)
POLYGON \s* \(
(?P<polygons> # (2 start)
\( \s*
(?P<points> # (3 start)
(?P<point> # (4 start)
\s*
( \d+ \s+ \d+ ) # (5)
\s*
,
){3,} # (4 end)
) # (3 end)
\s*
(?P<last_point> \d+ \s+ \d+ ) # (6)
\s* \),
)* # (2 end)
(?P<last_polygon> # (7 start)
\( \s*
(?P<points> # (8 start)
(?P<point> # (9 start)
\s*
( \d+ \s+ \d+ ) # (10)
\s*
,
){3,} # (9 end)
) # (8 end)
\s*
(?P<last_point> \d+ \s+ \d+ ) # (11)
\s* \)
) # (7 end)
\s* \)
) # (1 end)
输入
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
输出
** Grp 0 - ( pos 0 , len 65 )
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
** Grp 1 - ( pos 0 , len 65 )
POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
** Grp 2 [polygons] - ( pos 9 , len 30 )
(0 0, 0 10, 10 10, 10 0, 0 0),
** Grp 3 [points] - ( pos 10 , len 23 )
0 0, 0 10, 10 10, 10 0,
** Grp 4 [point] - ( pos 27 , len 6 )
10 0,
** Grp 5 - ( pos 28 , len 4 )
10 0
** Grp 6 [last_point] - ( pos 34 , len 3 )
0 0
** Grp 7 [last_polygon] - ( pos 39 , len 25 )
(3 3, 3 7, 7 7, 7 3, 3 3)
** Grp 8 [points] - ( pos 40 , len 19 )
3 3, 3 7, 7 7, 7 3,
** Grp 9 [point] - ( pos 54 , len 5 )
7 3,
** Grp 10 - ( pos 55 , len 3 )
7 3
** Grp 11 [last_point] - ( pos 60 , len 3 )
3 3
可能的解决方案
并非不可能。它只需要几个额外的步骤。
(顺便说一句,WKT 没有可以为您解析的库吗?)
现在,我不知道你的语言能力,所以这只是一个通用的方法。
1。验证您正在解析的表单。
这将验证 return 所有多边形集 作为 All_Polygons
组中的单个字符串。
目标POLYGON ((0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3))
POLYGON\s*\((?P<All_Polygons>(?:\(\s*\d+\s+\d+(?:\s*,\s*\d+\s+\d+){2,}\s*\))(?:\s*,\(\s*\d+\s+\d+(?:\s*,\s*\d+\s+\d+){2,}\s*\))*)\s*\)
** Grp 1 [All_Polygons] - ( pos 9 , len 55 )
(0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3)
2。如果 1 成功,则使用 All_Polygons
字符串的输出设置循环匹配。
目标(0 0, 0 10, 10 10, 10 0, 0 0),(3 3, 3 7, 7 7, 7 3, 3 3)
(?:\(\s*(?P<Single_Poly_All_Pts>\d+\s+\d+(?:\s*,\s*\d+\s+\d+){2,})\s*\))
这一步相当于查找所有类型的匹配项。它应该匹配单个多边形所有点的连续值,returned in Single_Poly_All_Pts
group string。
这将为您提供这 2 个单独的匹配项,它们可以放入具有 2 个值字符串的临时数组中:
** Grp 1 [Single_Poly_All_Pts] - ( pos 1 , len 27 )
0 0, 0 10, 10 10, 10 0, 0 0
** Grp 1 [Single_Poly_All_Pts] - ( pos 31 , len 23 )
3 3, 3 7, 7 7, 7 3, 3 3
3。如果 2 成功,则使用步骤 2 的临时数组输出设置循环匹配。
这将为您提供每个多边形的 个 点。
(?P<Single_Point>\d+\s+\d+)
这又是一个循环匹配(或查找所有类型的匹配)。对于每个数组元素
(多边形),这将产生单独的点。
目标[元素 1] 0 0, 0 10, 10 10, 10 0, 0 0
** Grp 1 [Single_Point] - ( pos 0 , len 3 )
0 0
** Grp 1 [Single_Point] - ( pos 5 , len 4 )
0 10
** Grp 1 [Single_Point] - ( pos 11 , len 5 )
10 10
** Grp 1 [Single_Point] - ( pos 18 , len 4 )
10 0
** Grp 1 [Single_Point] - ( pos 24 , len 3 )
0 0
并且,
目标[元素 2] 3 3, 3 7, 7 7, 7 3, 3 3
** Grp 1 [Single_Point] - ( pos 0 , len 3 )
3 3
** Grp 1 [Single_Point] - ( pos 5 , len 3 )
3 7
** Grp 1 [Single_Point] - ( pos 10 , len 3 )
7 7
** Grp 1 [Single_Point] - ( pos 15 , len 3 )
7 3
** Grp 1 [Single_Point] - ( pos 20 , len 3 )
3 3