pandas 在多索引上应用函数

pandas apply function on multiindex

我想在多索引数据帧(基本上是 groupby 描述数据帧)上应用一个函数,而不使用 for 循环遍历 0 级索引。

我想应用的功能:

def CI(x):
    import math
    sigma = x["std"]
    n = x["count"]
    return 1.96 * sigma / math.sqrt(n)

我的数据框示例:

df = df.iloc[47:52, [3,4,-1]]

               a          b                    id
47          0.218182   0.000000  0d1974107c6731989c762e96def73568
48          0.000000   0.000000  0d1974107c6731989c762e96def73568
49          0.218182   0.130909  0d1974107c6731989c762e96def73568
50          0.000000   0.000000  0fd4f3b4adf43682f08e693a905b7432
51          0.000000   0.000000  0fd4f3b4adf43682f08e693a905b7432

我用 nan 替换零:

df = df.replace(float(0), np.nan)

Groupy on id 和 describe 我得到 multiindex:

df_group = df.groupby("id").describe()

我不喜欢并认为可以改进的当前解决方案:

l_df = []
for column in df_group.columns.levels[0]:
    df = pd.DataFrame({"CI" : df_group[column].apply(CI, axis = 1)})
    l_df.append(df)
CI = pd.concat(l_df, axis = 1)
CI.columns = df_group.columns.levels[0]

所以我得到类似的东西:

                                    a       b
id
06f32e6e45da385834dac983256d59f3    nan     nan
0d1974107c6731989c762e96def73568    0.005   0.225
0fd4f3b4adf43682f08e693a905b7432    0.008   nan
11e0057cdc8b8e1b1cdabfa8a092ea5f    0.018   0.582
120549af6977623bd01d77135a91a523    0.008   0.204

那么,如果我有从 a 到 z 的顶级列,并且每个列都包含 std 和 count 列,我如何才能同时将我的函数应用于这些列中的每一列?

level 上使用 groupbyaxis=1,让您迭代并应用到第一级列。

In [104]: (df.groupby("id").describe()
             .groupby(level=0, axis=1)
             .apply(lambda x: x[x.name].apply(CI, axis=1)))
Out[104]:
                                    a   b
id
0d1974107c6731989c762e96def73568  0.0 NaN
0fd4f3b4adf43682f08e693a905b7432  NaN NaN

事实上,您不需要 CI,如果您需要

In [105]: (df.groupby("id").describe()
             .groupby(level=0, axis=1).apply(lambda x: x[x.name]
             .apply(lambda x: 1.96*x['std']/np.sqrt(x['count']), axis=1)))
Out[105]:
                                    a   b
id
0d1974107c6731989c762e96def73568  0.0 NaN
0fd4f3b4adf43682f08e693a905b7432  NaN NaN

样本df

In [106]: df
Out[106]:
           a         b                                id
47  0.218182       NaN  0d1974107c6731989c762e96def73568
48       NaN       NaN  0d1974107c6731989c762e96def73568
49  0.218182  0.130909  0d1974107c6731989c762e96def73568
50       NaN       NaN  0fd4f3b4adf43682f08e693a905b7432
51       NaN       NaN  0fd4f3b4adf43682f08e693a905b7432