ValueError: Error when checking input: expected lstm_1_input to have shape (None, 296, 2048) but got array with shape (296, 2048, 1)
ValueError: Error when checking input: expected lstm_1_input to have shape (None, 296, 2048) but got array with shape (296, 2048, 1)
我遇到了标题中的错误。我有数千个视频,每个视频有 37 帧。我用 CNN 模型为每一帧提取了特征并保存了它们。
我有一个堆叠式 LSTM 模型:
batch_size = 8
features_length = 2048
seq_length = 37*batch_size
in_shape = (seq_length, features_length)
lstm_model = Sequential()
lstm_model.add(LSTM(2048, return_sequences=True, input_shape = in_shape, dropout=0.5))
lstm_model.add(Flatten())
lstm_model.add(Dense(512, activation='relu'))
lstm_model.add(Dropout(0.5))
lstm_model.add(Dense(number_of_classes, activation='softmax'))
optimizer = Adam(lr=1e-6)
lstm_model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics = metrics)
lstm_model.fit_generator(generator = generator, steps_per_epoch = train_steps_per_epoch, epochs = nb_epoch, verbose = 1, callbacks=[checkpointer, tb, early_stopper, csv_logger], validation_data=val_generator, validation_steps = val_steps_per_epoch)
我有一台发电机;数据包括所有训练视频。
def generator(data):
while 1:
X, y = [], []
for _ in range(batch_size):
sequence = None
sample = random.choice(data)
folder_content, folder_name, class_name, video_features_loc = get_video_features(sample)
for f in folder_content:
image_feature_location = video_features_loc + f
feat = get_extracted_feature(image_feature_location)
X.append(feat)
y.append(get_one_class_rep(class_name))
yield np.array(X), np.array(y)
生成器数据中 X 的形状为 = (296, 2048, 1)
生成器数据中 y 的形状为 = (296, 27)
此代码抛出错误。我知道有几个类似的问题。我尝试了那里的建议,但没有运气。例如,建议之一是重塑数组;
X = np.reshape(X, (X.shape[2], X.shape[0], X.shape[1]))
如何将我的输入提供给 LSTM?
提前致谢
错误消息告诉您所需的一切。
X 的形状应该是 (number of samples, 296, 2048)
- 看起来你只有一个样本,从 X 的形状来看。
但是如果你有 37 帧,你绝对应该改变你的模型来接受:(Batch size, 37, 2048)
- 这里,批量大小似乎是 8。
seq_length=37
我遇到了标题中的错误。我有数千个视频,每个视频有 37 帧。我用 CNN 模型为每一帧提取了特征并保存了它们。 我有一个堆叠式 LSTM 模型:
batch_size = 8
features_length = 2048
seq_length = 37*batch_size
in_shape = (seq_length, features_length)
lstm_model = Sequential()
lstm_model.add(LSTM(2048, return_sequences=True, input_shape = in_shape, dropout=0.5))
lstm_model.add(Flatten())
lstm_model.add(Dense(512, activation='relu'))
lstm_model.add(Dropout(0.5))
lstm_model.add(Dense(number_of_classes, activation='softmax'))
optimizer = Adam(lr=1e-6)
lstm_model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics = metrics)
lstm_model.fit_generator(generator = generator, steps_per_epoch = train_steps_per_epoch, epochs = nb_epoch, verbose = 1, callbacks=[checkpointer, tb, early_stopper, csv_logger], validation_data=val_generator, validation_steps = val_steps_per_epoch)
我有一台发电机;数据包括所有训练视频。
def generator(data):
while 1:
X, y = [], []
for _ in range(batch_size):
sequence = None
sample = random.choice(data)
folder_content, folder_name, class_name, video_features_loc = get_video_features(sample)
for f in folder_content:
image_feature_location = video_features_loc + f
feat = get_extracted_feature(image_feature_location)
X.append(feat)
y.append(get_one_class_rep(class_name))
yield np.array(X), np.array(y)
生成器数据中 X 的形状为 = (296, 2048, 1)
生成器数据中 y 的形状为 = (296, 27)
此代码抛出错误。我知道有几个类似的问题。我尝试了那里的建议,但没有运气。例如,建议之一是重塑数组;
X = np.reshape(X, (X.shape[2], X.shape[0], X.shape[1]))
如何将我的输入提供给 LSTM?
提前致谢
错误消息告诉您所需的一切。
X 的形状应该是 (number of samples, 296, 2048)
- 看起来你只有一个样本,从 X 的形状来看。
但是如果你有 37 帧,你绝对应该改变你的模型来接受:(Batch size, 37, 2048)
- 这里,批量大小似乎是 8。
seq_length=37