创建两个可变的非类型模板参数包的笛卡尔积扩展

Create cartesian product expansion of two variadic, non-type template parameter packs

比方说,我有

如何创建 foo 的可变参数包,并使用两个列表元素的笛卡尔积进行参数化?

我的意思是:

template<int ...>
struct u_list {};

template<char ...>
struct c_list {};

template<int, char >
struct foo {};

template<class ...>
struct bar {};

using int_vals = u_list<1, 5, 7>;
using char_vals = c_list<-3, 3>;


using result_t = /* magic happens*/
using ref_t = bar<
    foo<1, -3>, foo<1, 3>,
    foo<5, -3>, foo<5, 3>,
    foo<7, -3>, foo<7, 3>
>;

static_assert(std::is_same<result_t, ref_t >::value, "");

我正在寻找适用于 c++11 且不使用除 c++11 标准库之外的任何库的解决方案。我也有我的 c++14 index_sequence / make_index_sequence 的 handroled 版本,如果简化代码,我可以提供非类型参数列表作为数组。

到目前为止我发现的最接近的是:How to create the Cartesian product of a type list?。所以原则上(我没有测试过)应该可以把非类型参数包变成类型参数包,然后在链接post中应用解决方案,但我希望有一个更简单的/ 更短的解决方案如下:

template<int... Ints, char ... Chars>
auto magic(u_list<Ints...>, c_list<Chars...>) 
{
    //Doesn't work, as it tries to expand the parameter packs in lock step
    return bar<foo<Ints,Chars>...>{};  
}

using result_t = decltype(magic(int_vals{}, char_vals{}));

在我看来,在纯类型领域进行模板元编程要容易得多。

从非类型模板参数领域转移到类型领域并再次返回需要一些工作,但这意味着您使用的是通用元编程实用程序,而不是特定于您的问题的实用程序。


所以我会将您的问题简化为类型列表中的笛卡尔积。

这是我的类型包:

template<class...Ts>struct types {
  using type=types; // makes inheriting from it useful
  static constexpr std::size_t size = sizeof...(Ts);
};

先写fmap。 Fmap 采用一个函数和一个列表,returns 应用函数的列表中每个元素的列表。

template<template<class...>class Z, class List>
struct fmap {};
template<template<class...>class Z, class List>
using fmap_t = typename fmap<Z,List>::type;
template<template<class...>class Z, class...Ts>
struct fmap<Z, types<Ts...>>:
  types<Z<Ts>...>
{};

fapply。 fapply 也接受一个函数和一个列表,但将该函数应用于整个列表元素集。

template<template<class...>class Z, class List>
struct fapply {};
template<template<class...>class Z, class List>
using fapply_t=typename fapply<Z,List>::type;
template<template<class...>class Z, class...Ts>
struct fapply<Z, types<Ts...>> {
  using type=Z<Ts...>;
};

碰巧 fapply 的部分应用非常有用:

template<template<class...>class Z>
struct applier {
    template<class List>
    using apply = fapply_t<Z,List>;
};

我们希望能够连接列表:

template<class...>
struct cat:types<> {};
template<class...As, class...Bs, class...Cs>
struct cat<types<As...>, types<Bs...>, Cs...>:
    cat<types<As..., Bs...>, Cs...>
{};
template<class...As>
struct cat<types<As...>>:types<As...>{};
template<class...Ts>using cat_t=typename cat<Ts...>::type;

那么,这里是cart_product_t:

template<class A, class B>
struct cart_product {};
template<class A, class B>
using cart_product_t = typename cart_product<A,B>::type;
template<class A, class... Bs>
struct cart_product<types<A>, types<Bs...>>:
  types< types<A, Bs>... >
{};
// reduce cart_product to cart_product on a one element list on the lhs:
template<class...As, class... Bs>
struct cart_product<types<As...>, types<Bs...>>:
  fapply_t<
    cat_t,
    fmap_t<
      applier<cart_product_t>::template apply,
      types<
        types< types<As>, types<Bs...> >...
      >
    >
  >
{};

针对您的问题的类型:

template<int...>struct u_list {};
template<char...>struct c_list {};
template<int, char>struct foo {};
template<class...>struct bar{};

将值列表提升为类型的工具:

template<class> struct lift {};
template<int...is> struct lift<u_list<is...>>:
  types< std::integral_constant<int, is>... >
{};
template<char...is> struct lift<c_list<is...>>:
  types< std::integral_constant<char, is>... >
{};
template<class T>using lift_t=typename lift<T>::type;

lower_to_foo 采用一对类型,并将它们转换为 foo:

template<class I, class C>
using lower_to_foo = foo<I::value, C::value>;

现在我们把它们放在一起:

using int_vals = u_list<1, 5, 7>;
using char_vals = c_list<-3, 3>;

using product = cart_product_t< lift_t<int_vals>, lift_t<char_vals> >;
static_assert( product::size == 6, "should be 6" );
using result_t = fapply_t< bar, fmap_t< applier<lower_to_foo>::template apply, product > >;

using ref_t = bar<
  foo<1, -3>, foo<1, 3>,
  foo<5, -3>, foo<5, 3>,
  foo<7, -3>, foo<7, 3>
>;
ref_t test = result_t{}; // gives better error messages than static_assert
static_assert(std::is_same<result_t, ref_t >::value, "");

鲍勃是你叔叔。

catfmapfapply都是函数式编程中比较标准的函数。 applier 只允许您使用元素而不是列表编写模板映射函数(它是部分应用的 fapply)。

Live example.


现在,还记得我说过模板元编程更容易使用类型吗?

注意到所有这些模板模板参数了吗?如果它们是类型,它会变得更容易。

template<template<class...>class Z>
struct ztemplate {
  template<class...Ts>using apply=Z<Ts...>;
};

您可以一直使用带类型标签的 hana 风格的 constexpr 元编程和 ztemplate 上的 operator() 和其他乐趣。

以type-list叉积为底

#include <iostream>
#include <typeinfo>
#include <cxxabi.h>

template<int ...> struct u_list {};

template<char ...> struct c_list {};

template<int, char > struct foo {};

template<typename...> struct type_list {};

我们用 row

扩展 char...
template<int I, char... Cs>
  struct row
{
  typedef type_list<foo<I,Cs>...> type;
};

template <typename... T> struct concat;

template <typename... S, typename... T>
struct concat<type_list<S...>, type_list<T...>>
{
    using type = type_list<S..., T...>;
};

我们想要 concat 的额外专业化以突破基本情况

template <typename... T>
struct concat<type_list<T...>, void>
{
    using type = type_list<T...>;
};

template<typename I, typename C>
struct cross_product;

基本情况:不再有整数

template<char... Cs>
struct cross_product<u_list<>, c_list<Cs...>>
{
    using type = void;
};

递归情况:一个整数,后跟一组整数

template<int I, int... Is, char... Cs>
struct cross_product<u_list<I, Is...>, c_list<Cs...>>
{
    using type = typename concat<typename row<I,Cs...>::type, typename cross_product<u_list<Is...>, c_list<Cs...>>::type>::type;

};

int main()
{
  using int_vals = u_list<1, 5, 7>;
  using char_vals = c_list<-3, 3>;

  using result_t = cross_product<int_vals, char_vals>::type;
  using ref_t = type_list<
      foo<1, -3>, foo<1, 3>,
      foo<5, -3>, foo<5, 3>,
      foo<7, -3>, foo<7, 3>
  >;

  static_assert(std::is_same<result_t, ref_t >::value, "");
  return 0;
}

Live on Coliru!

您可以执行以下操作:

template <int... Is>
using u_list = std::integer_sequence<int, Is...>;

template <char... Cs>
using c_list = std::integer_sequence<char, Cs...>;

template<int, char> struct foo {};

template<class ...> struct bar {};

template <std::size_t I, typename T, template <typename, T...> class C, T ... Is>
constexpr T get(C<T, Is...> c)
{
    constexpr T values[] = {Is...};
    return values[I];
}


template <std::size_t I, typename T>
constexpr auto get_v = get<I>(T{});


template<int... Ints, char ... Chars, std::size_t ... Is>
auto cartesian_product(u_list<Ints...>, c_list<Chars...>, std::index_sequence<Is...>)
-> bar<foo<
        get_v<Is / sizeof...(Chars), u_list<Ints...> >,
        get_v<Is % sizeof...(Chars), c_list<Chars...> >
        >...
    >;

template<int... Ints, char ... Chars>
auto cartesian_product(u_list<Ints...> u, c_list<Chars...> c)
-> decltype(cartesian_product(u, c, std::make_index_sequence<sizeof...(Ints) * sizeof...(Chars)>()));




using int_vals = u_list<1, 5, 7>;
using char_vals = c_list<-3, 3>;

using result_t = decltype(cartesian_product(int_vals{}, char_vals{}));

Demo

标准部分的可能实现:

template <typename T, T ... Is> struct integer_sequence{};

template <std::size_t ... Is>
using index_sequence = integer_sequence<std::size_t, Is...>;

template <std::size_t N, std::size_t... Is>
struct make_index_sequence : make_index_sequence<N - 1, N - 1, Is...> {};

template <std::size_t... Is>
struct make_index_sequence<0u, Is...> : index_sequence<Is...> {};

并更改答案:

template <std::size_t I, typename T, template <typename, T...> class C, T ... Is>
constexpr T get(C<T, Is...> c)
{
    using array = T[];
    return array{Is...}[I];
}

template<int... Ints, char ... Chars, std::size_t ... Is>
auto cartesian_product(u_list<Ints...>, c_list<Chars...>, index_sequence<Is...>)
-> bar<foo<
        get<Is / sizeof...(Chars)>(u_list<Ints...>{}),
        get<Is % sizeof...(Chars)>(c_list<Chars...>{})
        >...
    >;

Demo C++11

以下是我的2美分...

如果你想要一个通用的解决方案,我看到的更大的问题是从 int_valschar_vals 类型并不容易(在 C++11 中;在 C++17 中更简单)提取包含值的类型(intchar)。

所以我想你必须将它们与 foobar 一起传递给 magic<>(如果你不想要 foobar硬编码)。

所以对 magic<> 的调用变成了(以我的方式)

using result_t
   = typename magic<int, char, foo, bar, int_vals, char_vals>::type; 

以下是我的解决方案的完整工作示例。

#include <type_traits>

template <int...>  struct u_list {};
template <char...> struct c_list {};

template <int, char>    struct foo {};
template <typename ...> struct bar {};

template <typename T1, typename T2, T1 t1, T2 ... T2s>
struct midProd
 { };

template <typename T1, typename T2, template <T1, T2> class, typename...>
struct magicHelper;

template <typename T1, typename T2,
          template <T1, T2> class ResIn,
          template <typename...> class ResOut,
          typename ... R>
struct magicHelper<T1, T2, ResIn, ResOut<R...>>
 { using type = ResOut<R...>; };

template <typename T1, typename T2,
          template <T1, T2> class ResIn,
          template <typename...> class ResOut,
          typename ... R, T1 ts1, T2 ... ts2, typename ... MpS>
struct magicHelper<T1, T2, ResIn, ResOut<R...>,
              midProd<T1, T2, ts1, ts2...>, MpS...>
 { using type = typename magicHelper<T1, T2, ResIn,
                   ResOut<R..., ResIn<ts1, ts2>...>, MpS...>::type; };


template <typename T1, typename T2,
          template <T1, T2> class,
          template <typename...> class,
          typename, typename>
struct magic;

template <typename T1, typename T2,
          template <T1, T2> class ResIn,
          template <typename...> class ResOut,
          template <T1...> class C1, template <T2...> class C2,
          T1 ... ts1, T2 ... ts2>
struct magic<T1, T2, ResIn, ResOut, C1<ts1...>, C2<ts2...>>
 { using type = typename magicHelper<T1, T2, ResIn, ResOut<>,
                   midProd<T1, T2, ts1, ts2...>...>::type ; };

int main ()
 {
   using int_vals  = u_list<1, 5, 7>;
   using char_vals = c_list<-3, 3>;

   using result_t
      = typename magic<int, char, foo, bar, int_vals, char_vals>::type;

   using ref_t = bar< foo<1, -3>, foo<1, 3>,
                      foo<5, -3>, foo<5, 3>,
                      foo<7, -3>, foo<7, 3> >;

   static_assert(std::is_same<result_t, ref_t >::value, "");
 }

显然,如果您更喜欢硬编码某些类型(u_listc_listfoobar),解决方案会变得简单得多

#include <type_traits>

template <int...>  struct u_list {};
template <char...> struct c_list {};

template <int, char>    struct foo {};
template <typename ...> struct bar {};

template <int, char...> struct midProd {};

template <typename...>
struct magicH;

template <typename ... R>
struct magicH<bar<R...>>
 { using type = bar<R...>; };

template <typename ... R, int i, char ... cs, typename ... MpS>
struct magicH<bar<R...>, midProd<i, cs...>, MpS...>
 { using type = typename magicH<bar<R..., foo<i, cs>...>, MpS...>::type; };


template <typename, typename>
struct magic;

template <int ... is, char ... cs>
struct magic<u_list<is...>, c_list<cs...>>
 { using type = typename magicH<bar<>, midProd<is, cs...>...>::type; };

int main ()
 {
   using int_vals  = u_list<1, 5, 7>;
   using char_vals = c_list<-3, 3>;

   using result_t = typename magic<int_vals, char_vals>::type;

   using ref_t = bar< foo<1, -3>, foo<1, 3>,
                      foo<5, -3>, foo<5, 3>,
                      foo<7, -3>, foo<7, 3> >;

   static_assert(std::is_same<result_t, ref_t >::value, "");
 }

与C++17中的其他相同:

// Type your code here, or load an example.
#include <type_traits>

template<int ...>
struct u_list {};

template<char ...>
struct c_list {};

template<int, char >
struct foo {};

template<class ...>
struct bar {};

using int_vals = u_list<1, 5, 7>;
using char_vals = c_list<-3, 3>;

template<class... Args> struct type_list{
    template<class> struct make_concat;
    template<class ...Xs>
    struct make_concat<type_list<Xs...>>{
        using type = type_list<Args...,Xs...>;
    };
    template<class T>
    using concat = typename make_concat<T>::type;
    template<template<class...>class TT>
    using applied_to = TT<Args...>;
};

template<
         template<auto,auto> class C
        ,class X,class Y,class Yit=Y>
struct cart_prod;
template<template<auto,auto> class C,
         template<auto...> class Xt,
         template<auto...> class Yt,
         class Yit,
         auto Xi,auto...Xis,auto Yi,auto...Yis>
struct cart_prod<C,Xt<Xi,Xis...>,Yt<Yi,Yis...>,Yit>{
    using type = typename type_list<class C<Xi,Yi>>
       ::template concat<typename cart_prod<C,Xt<Xi,Xis...>,Yt<Yis...>,Yit>::type>;
};
template<template<auto,auto> class C,
         template<auto...> class Xt,
         template<auto...> class Yt,
         class Yit,
         auto Xi,auto...Xis,auto Yi>
struct cart_prod<C,Xt<Xi,Xis...>,Yt<Yi>,Yit>{
    using type = typename type_list<class C<Xi,Yi>>
       ::template concat<typename cart_prod<C,Xt<Xis...>,Yit,Yit>::type>;
};
template<template<auto,auto> class C,
         template<auto...> class Xt,
         template<auto...> class Yt,
         class Yit,
         auto Xi,auto Yi>
struct cart_prod<C,Xt<Xi>,Yt<Yi>,Yit>{
    using type = type_list<class C<Xi,Yi>>;
};


using result_t = cart_prod<foo,int_vals,char_vals>::type::applied_to<bar>;
using ref_t = bar<
    foo<1, -3>, foo<1, 3>,
    foo<5, -3>, foo<5, 3>,
    foo<7, -3>, foo<7, 3>
>;

static_assert(std::is_same<result_t, ref_t >::value, "");

另一个(但更短的)解决方案可能是

template<typename Ret,typename R>
auto magic( bar<u_list<>, R>, Ret result, R ) { return result; }

template<int I, int... Ints, typename... Foos, typename R>
auto magic( bar<u_list<I,Ints...>, c_list<>>, bar<Foos...>, R rollback ) { return magic(
    bar<u_list<Ints...>,R>{}, bar<Foos...>{}, rollback );}

template<int I, int... Ints, char J, char ... Chars, typename... Foos, typename R >
auto magic( bar<u_list<I,Ints...>, c_list<J,Chars...>>, bar<Foos...>, R rollback ) { return magic(
    bar<u_list<I,Ints...>, c_list<Chars...>>{},
    bar<Foos...,foo<I,J>>{},
    rollback );}

using result_t = decltype(magic( bar<int_vals,char_vals>{}, bar<>{}, char_vals{} ));