如何在不对索引进行排序的情况下执行 groupy.apply()?
How can I do groupy.apply() without sort my index?
我有如下数据:
myData = pd.DataFrame({'K':[810,820,825,830,840,855,842,823],'Type':
['C','C','P','P','C','B','A','B'],'S':[978,978,978,978,978,966,925,923],'R':
[0.05,0.05,0.05,0.05,0.05,0.03,0.04,0.05]})
K R S Type
0 810 0.05 978 C
1 820 0.05 978 C
2 825 0.05 978 P
3 830 0.05 978 P
4 840 0.05 978 C
5 855 0.03 966 B
6 842 0.04 925 A
7 823 0.05 923 B
我用 groupby
得到这个 :
K R S Type
Type
A 6 842 0.04 925 A
B 7 823 0.05 923 B
C 0 810 0.05 978 C
P 2 825 0.05 978 P
但我想要的是Type
顺序不变。
K R S Type
Type
C 0 810 0.05 978 C
P 2 825 0.05 978 P
B 7 823 0.05 923 B
A 6 842 0.04 925 A
例如使用groupby时使用sort = False
myData.groupby('Type',sort=False).mean()
K R S
Type
C 823.333333 0.05 978.0
P 827.500000 0.05 978.0
B 839.000000 0.04 944.5
A 842.000000 0.04 925.0
我有如下数据:
myData = pd.DataFrame({'K':[810,820,825,830,840,855,842,823],'Type':
['C','C','P','P','C','B','A','B'],'S':[978,978,978,978,978,966,925,923],'R':
[0.05,0.05,0.05,0.05,0.05,0.03,0.04,0.05]})
K R S Type
0 810 0.05 978 C
1 820 0.05 978 C
2 825 0.05 978 P
3 830 0.05 978 P
4 840 0.05 978 C
5 855 0.03 966 B
6 842 0.04 925 A
7 823 0.05 923 B
我用 groupby
得到这个 :
K R S Type
Type
A 6 842 0.04 925 A
B 7 823 0.05 923 B
C 0 810 0.05 978 C
P 2 825 0.05 978 P
但我想要的是Type
顺序不变。
K R S Type
Type
C 0 810 0.05 978 C
P 2 825 0.05 978 P
B 7 823 0.05 923 B
A 6 842 0.04 925 A
例如使用groupby时使用sort = False
myData.groupby('Type',sort=False).mean()
K R S Type C 823.333333 0.05 978.0 P 827.500000 0.05 978.0 B 839.000000 0.04 944.5 A 842.000000 0.04 925.0