当 Seq2Seq 网络在输出中一遍又一遍地重复单词时该怎么办?
What to do when Seq2Seq network repeats words over and over in output?
所以,我已经在一个项目上工作了一段时间,我们的数据非常很少,我知道如果我们能够把一个大得多的数据集。除此之外,我现在的问题是当我有一个句子输入时,我的输出现在看起来像这样:
contactid contactid contactid contactid
一个词被专注并一遍又一遍地重复。我能做些什么来克服这个障碍?
我尝试过的事情:
- 仔细检查我正在附加 start/stop 标记并确保标记正确放置在他们的 vocab 文件的顶部,我正在共享 vocab。
- 我发现这可能是由于词嵌入不佳造成的。为此,我检查了 tensorboard,果然 PCA 显示了一个非常密集的点簇。看到我抓取了 Facebook 的 public 预训练词向量并将它们作为嵌入加载。再次训练,这次 tensorboard PCA 显示了更好的画面。
- 将我的训练调度器从 basic 切换到 SampledScheduling,偶尔用 ground truth 替换训练输出。
- 将我的解码器切换为使用束搜索解码器我认为如果中间特征中的单词选择靠得很近,这可能会给出更稳健的响应 space。
可以肯定的是,我的困惑正在稳步减少。
这是我的数据集准备代码:
class ModelInputs(object):
"""Factory to construct various input hooks and functions depending on mode """
def __init__(
self, vocab_files, batch_size,
share_vocab=True, src_eos_id=1, tgt_eos_id=2
):
self.batch_size = batch_size
self.vocab_files = vocab_files
self.share_vocab = share_vocab
self.src_eos_id = src_eos_id
self.tgt_eos_id = tgt_eos_id
def get_inputs(self, file_path, num_infer=None, mode=tf.estimator.ModeKeys.TRAIN):
self.mode = mode
if self.mode == tf.estimator.ModeKeys.TRAIN:
return self._training_input_hook(file_path)
if self.mode == tf.estimator.ModeKeys.EVAL:
return self._validation_input_hook(file_path)
if self.mode == tf.estimator.ModeKeys.PREDICT:
if num_infer is None:
raise ValueError('If performing inference must supply number of predictions to be made.')
return self._infer_input_hook(file_path, num_infer)
def _prepare_data(self, dataset, out=False):
prep_set = dataset.map(lambda string: tf.string_split([string]).values)
prep_set = prep_set.map(lambda words: (words, tf.size(words)))
if out == True:
return prep_set.map(lambda words, size: (self.vocab_tables[1].lookup(words), size))
return prep_set.map(lambda words, size: (self.vocab_tables[0].lookup(words), size))
def _batch_data(self, dataset, src_eos_id, tgt_eos_id):
batched_set = dataset.padded_batch(
self.batch_size,
padded_shapes=((tf.TensorShape([None]), tf.TensorShape([])), (tf.TensorShape([None]), tf.TensorShape([]))),
padding_values=((src_eos_id, 0), (tgt_eos_id, 0))
)
return batched_set
def _batch_infer_data(self, dataset, src_eos_id):
batched_set = dataset.padded_batch(
self.batch_size,
padded_shapes=(tf.TensorShape([None]), tf.TensorShape([])),
padding_values=(src_eos_id, 0)
)
return batched_set
def _create_vocab_tables(self, vocab_files, share_vocab=False):
if vocab_files[1] is None and share_vocab == False:
raise ValueError('If share_vocab is set to false must provide target vocab. (src_vocab_file, \
target_vocab_file)')
src_vocab_table = lookup_ops.index_table_from_file(
vocab_files[0],
default_value=UNK_ID
)
if share_vocab:
tgt_vocab_table = src_vocab_table
else:
tgt_vocab_table = lookup_ops.index_table_from_file(
vocab_files[1],
default_value=UNK_ID
)
return src_vocab_table, tgt_vocab_table
def _prepare_iterator_hook(self, hook, scope_name, iterator, file_path, name_placeholder):
if self.mode == tf.estimator.ModeKeys.TRAIN or self.mode == tf.estimator.ModeKeys.EVAL:
feed_dict = {
name_placeholder[0]: file_path[0],
name_placeholder[1]: file_path[1]
}
else:
feed_dict = {name_placeholder: file_path}
with tf.name_scope(scope_name):
hook.iterator_initializer_func = \
lambda sess: sess.run(
iterator.initializer,
feed_dict=feed_dict,
)
def _set_up_train_or_eval(self, scope_name, file_path):
hook = IteratorInitializerHook()
def input_fn():
with tf.name_scope(scope_name):
with tf.name_scope('sentence_markers'):
src_eos_id = tf.constant(self.src_eos_id, dtype=tf.int64)
tgt_eos_id = tf.constant(self.tgt_eos_id, dtype=tf.int64)
self.vocab_tables = self._create_vocab_tables(self.vocab_files, self.share_vocab)
in_file = tf.placeholder(tf.string, shape=())
in_dataset = self._prepare_data(tf.contrib.data.TextLineDataset(in_file).repeat(None))
out_file = tf.placeholder(tf.string, shape=())
out_dataset = self._prepare_data(tf.contrib.data.TextLineDataset(out_file).repeat(None))
dataset = tf.contrib.data.Dataset.zip((in_dataset, out_dataset))
dataset = self._batch_data(dataset, src_eos_id, tgt_eos_id)
iterator = dataset.make_initializable_iterator()
next_example, next_label = iterator.get_next()
self._prepare_iterator_hook(hook, scope_name, iterator, file_path, (in_file, out_file))
return next_example, next_label
return (input_fn, hook)
def _training_input_hook(self, file_path):
input_fn, hook = self._set_up_train_or_eval('train_inputs', file_path)
return (input_fn, hook)
def _validation_input_hook(self, file_path):
input_fn, hook = self._set_up_train_or_eval('eval_inputs', file_path)
return (input_fn, hook)
def _infer_input_hook(self, file_path, num_infer):
hook = IteratorInitializerHook()
def input_fn():
with tf.name_scope('infer_inputs'):
with tf.name_scope('sentence_markers'):
src_eos_id = tf.constant(self.src_eos_id, dtype=tf.int64)
self.vocab_tables = self._create_vocab_tables(self.vocab_files, self.share_vocab)
infer_file = tf.placeholder(tf.string, shape=())
dataset = tf.contrib.data.TextLineDataset(infer_file)
dataset = self._prepare_data(dataset)
dataset = self._batch_infer_data(dataset, src_eos_id)
iterator = dataset.make_initializable_iterator()
next_example, seq_len = iterator.get_next()
self._prepare_iterator_hook(hook, 'infer_inputs', iterator, file_path, infer_file)
return ((next_example, seq_len), None)
return (input_fn, hook)
这是我的模型:
class Seq2Seq():
def __init__(
self, batch_size, inputs,
outputs, inp_vocab_size, tgt_vocab_size,
embed_dim, mode, time_major=False,
enc_embedding=None, dec_embedding=None, average_across_batch=True,
average_across_timesteps=True, vocab_path=None, embedding_path='./data_files/wiki.simple.vec'
):
embed_np = self._get_embedding(embedding_path)
if not enc_embedding:
self.enc_embedding = tf.contrib.layers.embed_sequence(
inputs,
inp_vocab_size,
embed_dim,
trainable=True,
scope='embed',
initializer=tf.constant_initializer(value=embed_np, dtype=tf.float32)
)
else:
self.enc_embedding = enc_embedding
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
if not dec_embedding:
embed_outputs = tf.contrib.layers.embed_sequence(
outputs,
tgt_vocab_size,
embed_dim,
trainable=True,
scope='embed',
reuse=True
)
with tf.variable_scope('embed', reuse=True):
dec_embedding = tf.get_variable('embeddings')
self.embed_outputs = embed_outputs
self.dec_embedding = dec_embedding
else:
self.dec_embedding = dec_embedding
else:
with tf.variable_scope('embed', reuse=True):
self.dec_embedding = tf.get_variable('embeddings')
if mode == tf.estimator.ModeKeys.PREDICT and vocab_path is None:
raise ValueError('If mode is predict, must supply vocab_path')
self.vocab_path = vocab_path
self.inp_vocab_size = inp_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.average_across_batch = average_across_batch
self.average_across_timesteps = average_across_timesteps
self.time_major = time_major
self.batch_size = batch_size
self.mode = mode
def _get_embedding(self, embedding_path):
model = KeyedVectors.load_word2vec_format(embedding_path)
vocab = model.vocab
vocab_len = len(vocab)
return np.array([model.word_vec(k) for k in vocab.keys()])
def _get_lstm(self, num_units):
return tf.nn.rnn_cell.BasicLSTMCell(num_units)
def encode(self, num_units, num_layers, seq_len, cell_fw=None, cell_bw=None):
if cell_fw and cell_bw:
fw_cell = cell_fw
bw_cell = cell_bw
else:
fw_cell = self._get_lstm(num_units)
bw_cell = self._get_lstm(num_units)
encoder_outputs, bi_encoder_state = tf.nn.bidirectional_dynamic_rnn(
fw_cell,
bw_cell,
self.enc_embedding,
sequence_length=seq_len,
time_major=self.time_major,
dtype=tf.float32
)
c_state = tf.concat([bi_encoder_state[0].c, bi_encoder_state[1].c], axis=1)
h_state = tf.concat([bi_encoder_state[0].h, bi_encoder_state[1].h], axis=1)
encoder_state = tf.contrib.rnn.LSTMStateTuple(c=c_state, h=h_state)
return tf.concat(encoder_outputs, -1), encoder_state
def _train_decoder(self, decoder_cell, out_seq_len, encoder_state, helper):
if not helper:
helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper(
self.embed_outputs,
out_seq_len,
self.dec_embedding,
0.3,
)
# helper = tf.contrib.seq2seq.TrainingHelper(
# self.dec_embedding,
# out_seq_len,
# )
projection_layer = layers_core.Dense(self.tgt_vocab_size, use_bias=False)
decoder = tf.contrib.seq2seq.BasicDecoder(
decoder_cell,
helper,
encoder_state,
output_layer=projection_layer
)
return decoder
def _predict_decoder(self, cell, encoder_state, beam_width, length_penalty_weight):
tiled_encoder_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=beam_width
)
with tf.name_scope('sentence_markers'):
sos_id = tf.constant(1, dtype=tf.int32)
eos_id = tf.constant(2, dtype=tf.int32)
start_tokens = tf.fill([self.batch_size], sos_id)
end_token = eos_id
projection_layer = layers_core.Dense(self.tgt_vocab_size, use_bias=False)
emb = tf.squeeze(self.dec_embedding)
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=cell,
embedding=self.dec_embedding,
start_tokens=start_tokens,
end_token=end_token,
initial_state=tiled_encoder_state,
beam_width=beam_width,
output_layer=projection_layer,
length_penalty_weight=length_penalty_weight
)
return decoder
def decode(
self, num_units, out_seq_len,
encoder_state, cell=None, helper=None,
beam_width=None, length_penalty_weight=None
):
with tf.name_scope('Decode'):
if cell:
decoder_cell = cell
else:
decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(2*num_units)
if self.mode != estimator.ModeKeys.PREDICT:
decoder = self._train_decoder(decoder_cell, out_seq_len, encoder_state, helper)
else:
decoder = self._predict_decoder(decoder_cell, encoder_state, beam_width, length_penalty_weight)
outputs = tf.contrib.seq2seq.dynamic_decode(
decoder,
maximum_iterations=20,
swap_memory=True,
)
outputs = outputs[0]
if self.mode != estimator.ModeKeys.PREDICT:
return outputs.rnn_output, outputs.sample_id
else:
return outputs.beam_search_decoder_output, outputs.predicted_ids
def prepare_predict(self, sample_id):
rev_table = lookup_ops.index_to_string_table_from_file(
self.vocab_path, default_value=UNK)
predictions = rev_table.lookup(tf.to_int64(sample_id))
return tf.estimator.EstimatorSpec(
predictions=predictions,
mode=tf.estimator.ModeKeys.PREDICT
)
def prepare_train_eval(
self, t_out,
out_seq_len, labels, lr,
train_op=None, loss=None
):
if not loss:
weights = tf.sequence_mask(
out_seq_len,
dtype=t_out.dtype
)
loss = tf.contrib.seq2seq.sequence_loss(
t_out,
labels,
weights,
average_across_batch=self.average_across_batch,
)
if not train_op:
train_op = tf.contrib.layers.optimize_loss(
loss,
tf.train.get_global_step(),
optimizer='SGD',
learning_rate=lr,
summaries=['loss', 'learning_rate']
)
return tf.estimator.EstimatorSpec(
mode=self.mode,
loss=loss,
train_op=train_op,
)
如果您在小数据上进行训练,请尝试减少参数 f 的数量。 e.每层的神经元数量。
对我来说,当网络一直输出一个词时,学习率的显着降低会有所帮助。
这种类型的重复称为 "text degeneration"。
2019 年有一篇很棒的论文分析了这种现象:The Curious Case of Neural Text Degeneration Ari Holtzman 等人。来自艾伦人工智能研究所。
重复可能来自解码器站点上的文本搜索(文本采样)类型。许多人只是通过模型提出的最有可能的下一个世界(最后一层 softmax 上的 argmax)或所谓的波束搜索来实现这一点。事实上,波束搜索是当今的行业标准。
这是文章中的 Beam search 示例:
继续(BeamSearch,b=10):
”独角兽们能够互相交流,他们说独角兽。声明说独角兽。洛杉矶系教授,最重要的地方得到世界认可世界的a 世界的a 世界的a 世界的a 世界的a 世界的a 世界的a 世界的a 的世界的一个…
如您所见,有大量重复。
根据这篇论文,这种奇怪的情况可以用以下事实来解释:每个重复的单词序列比没有下一个重复的序列具有更高的概率:
本文提出了一些由解码器对单词进行采样的解决方法。这肯定需要更多的研究,但这是我们今天最好的解释。
另一个是你的模型还需要更多的训练。在许多情况下,当我拥有庞大的训练集并且模型仍然无法很好地概括整个数据多样性时,我会遇到类似的行为。为了检验这个假设——尝试在较小的数据集上训练,看看它是否泛化(产生有意义的结果)。
但即使您的模型泛化能力足够好,也不意味着您永远不会遇到重复模式。除非你改变解码器的采样模式,否则这是一个常见的场景。
所以,我已经在一个项目上工作了一段时间,我们的数据非常很少,我知道如果我们能够把一个大得多的数据集。除此之外,我现在的问题是当我有一个句子输入时,我的输出现在看起来像这样:
contactid contactid contactid contactid
一个词被专注并一遍又一遍地重复。我能做些什么来克服这个障碍?
我尝试过的事情:
- 仔细检查我正在附加 start/stop 标记并确保标记正确放置在他们的 vocab 文件的顶部,我正在共享 vocab。
- 我发现这可能是由于词嵌入不佳造成的。为此,我检查了 tensorboard,果然 PCA 显示了一个非常密集的点簇。看到我抓取了 Facebook 的 public 预训练词向量并将它们作为嵌入加载。再次训练,这次 tensorboard PCA 显示了更好的画面。
- 将我的训练调度器从 basic 切换到 SampledScheduling,偶尔用 ground truth 替换训练输出。
- 将我的解码器切换为使用束搜索解码器我认为如果中间特征中的单词选择靠得很近,这可能会给出更稳健的响应 space。
可以肯定的是,我的困惑正在稳步减少。
这是我的数据集准备代码:
class ModelInputs(object):
"""Factory to construct various input hooks and functions depending on mode """
def __init__(
self, vocab_files, batch_size,
share_vocab=True, src_eos_id=1, tgt_eos_id=2
):
self.batch_size = batch_size
self.vocab_files = vocab_files
self.share_vocab = share_vocab
self.src_eos_id = src_eos_id
self.tgt_eos_id = tgt_eos_id
def get_inputs(self, file_path, num_infer=None, mode=tf.estimator.ModeKeys.TRAIN):
self.mode = mode
if self.mode == tf.estimator.ModeKeys.TRAIN:
return self._training_input_hook(file_path)
if self.mode == tf.estimator.ModeKeys.EVAL:
return self._validation_input_hook(file_path)
if self.mode == tf.estimator.ModeKeys.PREDICT:
if num_infer is None:
raise ValueError('If performing inference must supply number of predictions to be made.')
return self._infer_input_hook(file_path, num_infer)
def _prepare_data(self, dataset, out=False):
prep_set = dataset.map(lambda string: tf.string_split([string]).values)
prep_set = prep_set.map(lambda words: (words, tf.size(words)))
if out == True:
return prep_set.map(lambda words, size: (self.vocab_tables[1].lookup(words), size))
return prep_set.map(lambda words, size: (self.vocab_tables[0].lookup(words), size))
def _batch_data(self, dataset, src_eos_id, tgt_eos_id):
batched_set = dataset.padded_batch(
self.batch_size,
padded_shapes=((tf.TensorShape([None]), tf.TensorShape([])), (tf.TensorShape([None]), tf.TensorShape([]))),
padding_values=((src_eos_id, 0), (tgt_eos_id, 0))
)
return batched_set
def _batch_infer_data(self, dataset, src_eos_id):
batched_set = dataset.padded_batch(
self.batch_size,
padded_shapes=(tf.TensorShape([None]), tf.TensorShape([])),
padding_values=(src_eos_id, 0)
)
return batched_set
def _create_vocab_tables(self, vocab_files, share_vocab=False):
if vocab_files[1] is None and share_vocab == False:
raise ValueError('If share_vocab is set to false must provide target vocab. (src_vocab_file, \
target_vocab_file)')
src_vocab_table = lookup_ops.index_table_from_file(
vocab_files[0],
default_value=UNK_ID
)
if share_vocab:
tgt_vocab_table = src_vocab_table
else:
tgt_vocab_table = lookup_ops.index_table_from_file(
vocab_files[1],
default_value=UNK_ID
)
return src_vocab_table, tgt_vocab_table
def _prepare_iterator_hook(self, hook, scope_name, iterator, file_path, name_placeholder):
if self.mode == tf.estimator.ModeKeys.TRAIN or self.mode == tf.estimator.ModeKeys.EVAL:
feed_dict = {
name_placeholder[0]: file_path[0],
name_placeholder[1]: file_path[1]
}
else:
feed_dict = {name_placeholder: file_path}
with tf.name_scope(scope_name):
hook.iterator_initializer_func = \
lambda sess: sess.run(
iterator.initializer,
feed_dict=feed_dict,
)
def _set_up_train_or_eval(self, scope_name, file_path):
hook = IteratorInitializerHook()
def input_fn():
with tf.name_scope(scope_name):
with tf.name_scope('sentence_markers'):
src_eos_id = tf.constant(self.src_eos_id, dtype=tf.int64)
tgt_eos_id = tf.constant(self.tgt_eos_id, dtype=tf.int64)
self.vocab_tables = self._create_vocab_tables(self.vocab_files, self.share_vocab)
in_file = tf.placeholder(tf.string, shape=())
in_dataset = self._prepare_data(tf.contrib.data.TextLineDataset(in_file).repeat(None))
out_file = tf.placeholder(tf.string, shape=())
out_dataset = self._prepare_data(tf.contrib.data.TextLineDataset(out_file).repeat(None))
dataset = tf.contrib.data.Dataset.zip((in_dataset, out_dataset))
dataset = self._batch_data(dataset, src_eos_id, tgt_eos_id)
iterator = dataset.make_initializable_iterator()
next_example, next_label = iterator.get_next()
self._prepare_iterator_hook(hook, scope_name, iterator, file_path, (in_file, out_file))
return next_example, next_label
return (input_fn, hook)
def _training_input_hook(self, file_path):
input_fn, hook = self._set_up_train_or_eval('train_inputs', file_path)
return (input_fn, hook)
def _validation_input_hook(self, file_path):
input_fn, hook = self._set_up_train_or_eval('eval_inputs', file_path)
return (input_fn, hook)
def _infer_input_hook(self, file_path, num_infer):
hook = IteratorInitializerHook()
def input_fn():
with tf.name_scope('infer_inputs'):
with tf.name_scope('sentence_markers'):
src_eos_id = tf.constant(self.src_eos_id, dtype=tf.int64)
self.vocab_tables = self._create_vocab_tables(self.vocab_files, self.share_vocab)
infer_file = tf.placeholder(tf.string, shape=())
dataset = tf.contrib.data.TextLineDataset(infer_file)
dataset = self._prepare_data(dataset)
dataset = self._batch_infer_data(dataset, src_eos_id)
iterator = dataset.make_initializable_iterator()
next_example, seq_len = iterator.get_next()
self._prepare_iterator_hook(hook, 'infer_inputs', iterator, file_path, infer_file)
return ((next_example, seq_len), None)
return (input_fn, hook)
这是我的模型:
class Seq2Seq():
def __init__(
self, batch_size, inputs,
outputs, inp_vocab_size, tgt_vocab_size,
embed_dim, mode, time_major=False,
enc_embedding=None, dec_embedding=None, average_across_batch=True,
average_across_timesteps=True, vocab_path=None, embedding_path='./data_files/wiki.simple.vec'
):
embed_np = self._get_embedding(embedding_path)
if not enc_embedding:
self.enc_embedding = tf.contrib.layers.embed_sequence(
inputs,
inp_vocab_size,
embed_dim,
trainable=True,
scope='embed',
initializer=tf.constant_initializer(value=embed_np, dtype=tf.float32)
)
else:
self.enc_embedding = enc_embedding
if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
if not dec_embedding:
embed_outputs = tf.contrib.layers.embed_sequence(
outputs,
tgt_vocab_size,
embed_dim,
trainable=True,
scope='embed',
reuse=True
)
with tf.variable_scope('embed', reuse=True):
dec_embedding = tf.get_variable('embeddings')
self.embed_outputs = embed_outputs
self.dec_embedding = dec_embedding
else:
self.dec_embedding = dec_embedding
else:
with tf.variable_scope('embed', reuse=True):
self.dec_embedding = tf.get_variable('embeddings')
if mode == tf.estimator.ModeKeys.PREDICT and vocab_path is None:
raise ValueError('If mode is predict, must supply vocab_path')
self.vocab_path = vocab_path
self.inp_vocab_size = inp_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.average_across_batch = average_across_batch
self.average_across_timesteps = average_across_timesteps
self.time_major = time_major
self.batch_size = batch_size
self.mode = mode
def _get_embedding(self, embedding_path):
model = KeyedVectors.load_word2vec_format(embedding_path)
vocab = model.vocab
vocab_len = len(vocab)
return np.array([model.word_vec(k) for k in vocab.keys()])
def _get_lstm(self, num_units):
return tf.nn.rnn_cell.BasicLSTMCell(num_units)
def encode(self, num_units, num_layers, seq_len, cell_fw=None, cell_bw=None):
if cell_fw and cell_bw:
fw_cell = cell_fw
bw_cell = cell_bw
else:
fw_cell = self._get_lstm(num_units)
bw_cell = self._get_lstm(num_units)
encoder_outputs, bi_encoder_state = tf.nn.bidirectional_dynamic_rnn(
fw_cell,
bw_cell,
self.enc_embedding,
sequence_length=seq_len,
time_major=self.time_major,
dtype=tf.float32
)
c_state = tf.concat([bi_encoder_state[0].c, bi_encoder_state[1].c], axis=1)
h_state = tf.concat([bi_encoder_state[0].h, bi_encoder_state[1].h], axis=1)
encoder_state = tf.contrib.rnn.LSTMStateTuple(c=c_state, h=h_state)
return tf.concat(encoder_outputs, -1), encoder_state
def _train_decoder(self, decoder_cell, out_seq_len, encoder_state, helper):
if not helper:
helper = tf.contrib.seq2seq.ScheduledEmbeddingTrainingHelper(
self.embed_outputs,
out_seq_len,
self.dec_embedding,
0.3,
)
# helper = tf.contrib.seq2seq.TrainingHelper(
# self.dec_embedding,
# out_seq_len,
# )
projection_layer = layers_core.Dense(self.tgt_vocab_size, use_bias=False)
decoder = tf.contrib.seq2seq.BasicDecoder(
decoder_cell,
helper,
encoder_state,
output_layer=projection_layer
)
return decoder
def _predict_decoder(self, cell, encoder_state, beam_width, length_penalty_weight):
tiled_encoder_state = tf.contrib.seq2seq.tile_batch(
encoder_state, multiplier=beam_width
)
with tf.name_scope('sentence_markers'):
sos_id = tf.constant(1, dtype=tf.int32)
eos_id = tf.constant(2, dtype=tf.int32)
start_tokens = tf.fill([self.batch_size], sos_id)
end_token = eos_id
projection_layer = layers_core.Dense(self.tgt_vocab_size, use_bias=False)
emb = tf.squeeze(self.dec_embedding)
decoder = tf.contrib.seq2seq.BeamSearchDecoder(
cell=cell,
embedding=self.dec_embedding,
start_tokens=start_tokens,
end_token=end_token,
initial_state=tiled_encoder_state,
beam_width=beam_width,
output_layer=projection_layer,
length_penalty_weight=length_penalty_weight
)
return decoder
def decode(
self, num_units, out_seq_len,
encoder_state, cell=None, helper=None,
beam_width=None, length_penalty_weight=None
):
with tf.name_scope('Decode'):
if cell:
decoder_cell = cell
else:
decoder_cell = tf.nn.rnn_cell.BasicLSTMCell(2*num_units)
if self.mode != estimator.ModeKeys.PREDICT:
decoder = self._train_decoder(decoder_cell, out_seq_len, encoder_state, helper)
else:
decoder = self._predict_decoder(decoder_cell, encoder_state, beam_width, length_penalty_weight)
outputs = tf.contrib.seq2seq.dynamic_decode(
decoder,
maximum_iterations=20,
swap_memory=True,
)
outputs = outputs[0]
if self.mode != estimator.ModeKeys.PREDICT:
return outputs.rnn_output, outputs.sample_id
else:
return outputs.beam_search_decoder_output, outputs.predicted_ids
def prepare_predict(self, sample_id):
rev_table = lookup_ops.index_to_string_table_from_file(
self.vocab_path, default_value=UNK)
predictions = rev_table.lookup(tf.to_int64(sample_id))
return tf.estimator.EstimatorSpec(
predictions=predictions,
mode=tf.estimator.ModeKeys.PREDICT
)
def prepare_train_eval(
self, t_out,
out_seq_len, labels, lr,
train_op=None, loss=None
):
if not loss:
weights = tf.sequence_mask(
out_seq_len,
dtype=t_out.dtype
)
loss = tf.contrib.seq2seq.sequence_loss(
t_out,
labels,
weights,
average_across_batch=self.average_across_batch,
)
if not train_op:
train_op = tf.contrib.layers.optimize_loss(
loss,
tf.train.get_global_step(),
optimizer='SGD',
learning_rate=lr,
summaries=['loss', 'learning_rate']
)
return tf.estimator.EstimatorSpec(
mode=self.mode,
loss=loss,
train_op=train_op,
)
如果您在小数据上进行训练,请尝试减少参数 f 的数量。 e.每层的神经元数量。
对我来说,当网络一直输出一个词时,学习率的显着降低会有所帮助。
这种类型的重复称为 "text degeneration"。
2019 年有一篇很棒的论文分析了这种现象:The Curious Case of Neural Text Degeneration Ari Holtzman 等人。来自艾伦人工智能研究所。
重复可能来自解码器站点上的文本搜索(文本采样)类型。许多人只是通过模型提出的最有可能的下一个世界(最后一层 softmax 上的 argmax)或所谓的波束搜索来实现这一点。事实上,波束搜索是当今的行业标准。
这是文章中的 Beam search 示例:
继续(BeamSearch,b=10):
”独角兽们能够互相交流,他们说独角兽。声明说独角兽。洛杉矶系教授,最重要的地方得到世界认可世界的a 世界的a 世界的a 世界的a 世界的a 世界的a 世界的a 世界的a 的世界的一个…
如您所见,有大量重复。
根据这篇论文,这种奇怪的情况可以用以下事实来解释:每个重复的单词序列比没有下一个重复的序列具有更高的概率:
本文提出了一些由解码器对单词进行采样的解决方法。这肯定需要更多的研究,但这是我们今天最好的解释。
另一个是你的模型还需要更多的训练。在许多情况下,当我拥有庞大的训练集并且模型仍然无法很好地概括整个数据多样性时,我会遇到类似的行为。为了检验这个假设——尝试在较小的数据集上训练,看看它是否泛化(产生有意义的结果)。
但即使您的模型泛化能力足够好,也不意味着您永远不会遇到重复模式。除非你改变解码器的采样模式,否则这是一个常见的场景。