如何使用 Pandas 将多索引系列连接到单个索引数据框?

How to join a multi-index series to a single index dataframe with Pandas?

考虑以下单索引 DataFrame:

      energy    fat
1      2000      28
2      1900      17
3      2200      30
4      1750      15
5      1800      18
6      1600      12

我也有一个多索引系列:

1  vitamin-c    0.0004
   vitamin-a    0.0150
2  vitamin-c    0.0030
3  vitamin-d    1.2000
   vitamin-e    1.0007
   vitamin-c    1.2020
4  vitamin-a    0.0780
5  vitamin-b    0.9650
6  vitamin-e    1.9801
   vitamin-c    1.0011

我怎样才能加入这两个结果如下所示:

      energy    fat          vitamins
1      2000      28     vitamin-c    0.0004
                        vitamin-a    0.0150
2      1900      17     vitamin-c    0.0030
3      2200      30     vitamin-d    1.2000
                        vitamin-e    1.0007
                        vitamin-c    1.2020
4      1750      15     vitamin-a    0.0780
5      1800      18     vitamin-b    0.9650
6      1600      12     vitamin-e    1.9801
                        vitamin-c    1.0011

我尝试了 df.join(series, how = 'inner') 但我得到的只是以下错误消息:

"ValueError: cannot join with no level specified and no overlapping names"

有人可以解释一下我在这里做错了什么以及我如何才能实现两者的结合吗?谢谢!

源集:

In [96]: s
Out[96]:
id   vitamins
1.0  vitamin-c    0.0004
     vitamin-a    0.0150
2.0  vitamin-c    0.0030
3.0  vitamin-d    1.2000
     vitamin-e    1.0007
     vitamin-c    1.2020
4.0  vitamin-a    0.0780
5.0  vitamin-b    0.9650
6.0  vitamin-e    1.9801
     vitamin-c    1.0011
Name: val, dtype: float64

In [97]: df
Out[97]:
   energy  fat
1    2000   28
2    1900   17
3    2200   30
4    1750   15
5    1800   18
6    1600   12

解决方案:

In [99]: s.reset_index() \
          .merge(df, left_on='id', right_index=True) \
          .set_index(['id','energy','fat','vitamins'])
Out[99]:
                             val
id  energy fat vitamins
1.0 2000   28  vitamin-c  0.0004
               vitamin-a  0.0150
2.0 1900   17  vitamin-c  0.0030
3.0 2200   30  vitamin-d  1.2000
               vitamin-e  1.0007
               vitamin-c  1.2020
4.0 1750   15  vitamin-a  0.0780
5.0 1800   18  vitamin-b  0.9650
6.0 1600   12  vitamin-e  1.9801
               vitamin-c  1.0011

选项 1
我不建议将不应该存在的内容移动到索引中。
也就是说,如果您的索引级别被适当命名,您可以使用 pd.DataFrame.join,或者更确切地说它们匹配,因此 pandas 知道要加入什么。

df.rename_axis('ord').join(s.rename_axis(['ord', 'vit']).rename('val'))

               energy  fat     val
ord vit                           
1   vitamin-c    2000   28  0.0004
    vitamin-a    2000   28  0.0150
2   vitamin-c    1900   17  0.0030
3   vitamin-d    2200   30  1.2000
    vitamin-e    2200   30  1.0007
    vitamin-c    2200   30  1.2020
4   vitamin-a    1750   15  0.0780
5   vitamin-b    1800   18  0.9650
6   vitamin-e    1600   12  1.9801
    vitamin-c    1600   12  1.0011

多写几行以增加可读性

s = s.rename_axis(['ord', 'vit']).rename('val')
df = df.rename_axis('ord')

df.join(s)

               energy  fat     val
ord vit                           
1   vitamin-c    2000   28  0.0004
    vitamin-a    2000   28  0.0150
2   vitamin-c    1900   17  0.0030
3   vitamin-d    2200   30  1.2000
    vitamin-e    2200   30  1.0007
    vitamin-c    2200   30  1.2020
4   vitamin-a    1750   15  0.0780
5   vitamin-b    1800   18  0.9650
6   vitamin-e    1600   12  1.9801
    vitamin-c    1600   12  1.0011

选项 2
我们还可以将 pd.concatlocpd.Index.get_level_values

一起使用
pd.concat(
    [df.loc[s.index.get_level_values(0)].set_index(s.index), s.rename('val')],
    axis=1
)

             energy  fat     val
1 vitamin-c    2000   28  0.0004
  vitamin-a    2000   28  0.0150
2 vitamin-c    1900   17  0.0030
3 vitamin-d    2200   30  1.2000
  vitamin-e    2200   30  1.0007
  vitamin-c    2200   30  1.2020
4 vitamin-a    1750   15  0.0780
5 vitamin-b    1800   18  0.9650
6 vitamin-e    1600   12  1.9801
  vitamin-c    1600   12  1.0011

如果您将名称添加到 index/multiindex,您可以使用连接:

In [11]: df
Out[11]:
   energy  fat
n
1    2000   28
2    1900   17
3    2200   30
4    1750   15
5    1800   18
6    1600   12

In [12]: df2
Out[12]:
                val
n vitamin
1 vitamin-c  0.0004
  vitamin-a  0.0150
2 vitamin-c  0.0030
3 vitamin-d  1.2000
  vitamin-e  1.0007
  vitamin-c  1.2020
4 vitamin-a  0.0780
5 vitamin-b  0.9650
6 vitamin-e  1.9801
  vitamin-c  1.0011

In [13]: df.join(df2)
Out[13]:
             energy  fat     val
n vitamin
1 vitamin-c    2000   28  0.0004
  vitamin-a    2000   28  0.0150
2 vitamin-c    1900   17  0.0030
3 vitamin-d    2200   30  1.2000
  vitamin-e    2200   30  1.0007
  vitamin-c    2200   30  1.2020
4 vitamin-a    1750   15  0.0780
5 vitamin-b    1800   18  0.9650
6 vitamin-e    1600   12  1.9801
  vitamin-c    1600   12  1.0011

注意:通过设置 .index.names:

In [21]: df.index.names = ["n"]  # or .name = "n"

In [22]: df2.index.names = ["n", "vitamin"]