如何从带有列表的嵌套字典构建 MultiIndex Pandas DataFrame

How to build a MultiIndex Pandas DataFrame from a nested dictionary with lists

我有以下字典。

d= {'key1': {'sub-key1': ['a','b','c','d','e']},
    'key2': {'sub-key2': ['1','2','3','5','8','9','10']}}

this post 的帮助下,我成功地将这个字典转换为 DataFrame。

df = pd.DataFrame.from_dict({(i,j): d[i][j] 
                            for i in d.keys() 
                            for j in d[i].keys()},
                            orient='index')

但是,我的 DataFrame 采用以下形式:

                  0  1  2  3  4     5     6
(key1, sub-key1)  a  b  c  d  e  None  None
(key2, sub-key2)  1  2  3  5  8     9    10

我可以使用元组作为索引值,但我认为使用多级 DataFrame 会更好。 Post 例如 帮助我分两步创建它,但是我正在努力一步完成(即从最初创建),因为字典中的列表以及之后的元组增加了一定程度的复杂性。

我认为你很接近,因为 MultiIndex 可以使用 MultiIndex.from_tuples 方法:

d = {(i,j): d[i][j] 
       for i in d.keys() 
       for j in d[i].keys()}

mux = pd.MultiIndex.from_tuples(d.keys())
df = pd.DataFrame(list(d.values()), index=mux)
print (df)
               0  1  2  3  4     5     6
key1 sub-key1  a  b  c  d  e  None  None
key2 sub-key2  1  2  3  5  8     9    10

谢谢, 另一种解决方案:

df = pd.DataFrame.from_dict({(i,j): d[i][j] 
                            for i in d.keys() 
                            for j in d[i].keys()},
                            orient='index')

df.index = pd.MultiIndex.from_tuples(df.index)
print (df)
               0  1  2  3  4     5     6
key1 sub-key1  a  b  c  d  e  None  None
key2 sub-key2  1  2  3  5  8     9    10

我将 stack 用于两个级别 dict...

df=pd.DataFrame(d)

df.T.stack().apply(pd.Series)
Out[230]: 
               0  1  2  3  4    5    6
key1 sub-key1  a  b  c  d  e  NaN  NaN
key2 sub-key2  1  2  3  5  8    9   10