如何一致地缩放数据帧 MinMaxScaler() sklearn

How to scale dataframes consistently MinMaxScaler() sklearn

我有三个数据框,每个数据框都使用 MinMaxScaler() 单独缩放。

def scale_dataframe(values_to_be_scaled)
    values = values_to_be_scaled.astype('float64')
    scaler = MinMaxScaler(feature_range=(0, 1))
    scaled = scaler.fit_transform(values)

    return scaled

scaled_values = []
for i in range(0,num_df):
    scaled_values.append(scale_dataframe(df[i].values))

我遇到的问题是每个数据帧都根据其自己的一组列最小值和最大值进行缩放。我需要我所有的数据帧都缩放到相同的值,就好像它们都共享同一组列的整体数据的最小值和最大值。有没有办法用 MinMaxScaler() 来完成这个?一种选择是制作一个大型数据帧,然后在分区之前缩放数据帧,但这并不理想。

查看 sklearn 的优秀 docs

如您所见,支持partial_fit()!这允许 online-scaling/minibatch-scaling 并且您可以控制小批量!

示例:

import numpy as np
from sklearn.preprocessing import MinMaxScaler

a = np.array([[1,2,3]])
b = np.array([[10,20,30]])
c = np.array([[5, 10, 15]])

""" Scale on all datasets together in one batch """
offline_scaler = MinMaxScaler()
offline_scaler.fit(np.vstack((a, b, c)))                # fit on whole data at once
a_offline_scaled = offline_scaler.transform(a)
b_offline_scaled = offline_scaler.transform(b)
c_offline_scaled = offline_scaler.transform(c)
print('Offline scaled')
print(a_offline_scaled)
print(b_offline_scaled)
print(c_offline_scaled)

""" Scale on all datasets together in minibatches """
online_scaler = MinMaxScaler()
online_scaler.partial_fit(a)                            # partial fit 1
online_scaler.partial_fit(b)                            # partial fit 2
online_scaler.partial_fit(c)                            # partial fit 3
a_online_scaled = online_scaler.transform(a)
b_online_scaled = online_scaler.transform(b)
c_online_scaled = online_scaler.transform(c)
print('Online scaled')
print(a_online_scaled)
print(b_online_scaled)
print(c_online_scaled)

输出:

Offline scaled
[[ 0.  0.  0.]]
[[ 1.  1.  1.]]
[[ 0.44444444  0.44444444  0.44444444]]
Online scaled
[[ 0.  0.  0.]]
[[ 1.  1.  1.]]
[[ 0.44444444  0.44444444  0.44444444]]