r 将多列数据合并为一列
r collapsing data from multiple columns into one
我知道有很多关于这个主题的问题,所以如果这是一个重复的问题,我深表歉意。我正在尝试将数据集中的多列折叠成一列:
假设这是我正在使用的数据集的结构,
df <- data.frame(
cbind(
variable_1 = c('Var1', NA, NA,'Var1'),
variable_2 = c('Var2', 'No', NA, NA),
variable_3 = c(NA, NA, 'Var3', NA),
variable_4 = c(NA, 'Var4', NA, NA),
variable_5 = c(NA, 'No', 'Var5', NA),
variable_6 = c(NA, NA, 'Var6', NA)
))
variable_1 variable_2 variable_3 variable_4 variable_5 variable_6
Var1 Var2 NA NA NA NA
NA No NA Var4 No NA
NA NA Var3 NA Var5 Var6
Var1 NA NA NA NA NA
我期待的是像这样的一栏 variable_7
variable_1 variable_2 variable_3 variable_4 variable_5 variable_6 variable_7
Var1 Var2 NA NA NA NA Var1, Var2
NA No NA Var4 No NA Var4
NA NA Var3 NA Var5 Var6 Var3, Var5, Var6
Var1 NA NA NA NA NA Var1
非常感谢任何帮助完成此任务的人。
df$variable_7 <- apply(df, 1, function(x) paste(x[!is.na(x) & x != "No"], collapse = ", "));
df;
# variable_1 variable_2 variable_3 variable_4 variable_5 variable_6
#1 Var1 Var2 <NA> <NA> <NA> <NA>
#2 <NA> No <NA> Var4 No <NA>
#3 <NA> <NA> Var3 <NA> Var5 Var6
#4 Var1 <NA> <NA> <NA> <NA> <NA>
# variable_7
#1 Var1, Var2
#2 Var4
#3 Var3, Var5, Var6
#4 Var1
说明:使用 apply
和 paste(..., collapse = ", ")
连接所有行条目(NA
s 和 "No"
s 除外)并存储在新列 variable_7
中.
示例数据
df <- data.frame(
cbind(
variable_1 = c('Var1', NA, NA,'Var1'),
variable_2 = c('Var2', 'No', NA, NA),
variable_3 = c(NA, NA, 'Var3', NA),
variable_4 = c(NA, 'Var4', NA, NA),
variable_5 = c(NA, 'No', 'Var5', NA),
variable_6 = c(NA, NA, 'Var6', NA)
))
我收集到,如果有 n 行,那么 objective 是创建一个 n 向量,其中包含每行中包含字符 Var
的那些值的逗号分隔字符串。 (如果您打算使用其他一些标准来分隔所需值和不需要的值,则相应地更改 grep
。)
apply(df, 1, function(x) toString(grep("Var", x, value = TRUE)))
## [1] "Var1, Var2" "Var4" "Var3, Var5, Var6" "Var1"
使用 data.table
'reshap' 方法而不是 loop/apply
library(data.table)
setDT(df)
df[, id := .I][
melt(df, id.vars = "id")[grepl("Var", value), .(variable_7 = paste0(value, collapse = ",")), by = .(id)]
, on = "id"
, nomatch = 0
][order(id)]
# variable_1 variable_2 variable_3 variable_4 variable_5 variable_6 id variable_7
# 1: Var1 Var2 NA NA NA NA 1 Var1,Var2
# 2: NA No NA Var4 No NA 2 Var4
# 3: NA NA Var3 NA Var5 Var6 3 Var3,Var5,Var6
# 4: Var1 NA NA NA NA NA 4 Var1
使用 dplyr
的解决方案。 df4
是最终输出。请看我是如何创建数据框的 df
。 cbind
不是必需的,最好添加 stringsAsFactors = FALSE
以防止创建因子列。
library(dplyr)
library(tidyr)
df2 <- df %>% mutate(ID = 1:n())
df3 <- df2 %>%
gather(Variable, Value, -ID, na.rm = TRUE) %>%
filter(!Value %in% "No") %>%
group_by(ID) %>%
summarise(variable_7 = toString(Value))
df4 <- df2 %>%
left_join(df3, by = "ID") %>%
select(-ID)
df4
# variable_1 variable_2 variable_3 variable_4 variable_5 variable_6 variable_7
# 1 Var1 Var2 <NA> <NA> <NA> <NA> Var1, Var2
# 2 <NA> No <NA> Var4 No <NA> Var4
# 3 <NA> <NA> Var3 <NA> Var5 Var6 Var3, Var5, Var6
# 4 Var1 <NA> <NA> <NA> <NA> <NA> Var1
数据
df <- data.frame(
variable_1 = c('Var1', NA, NA,'Var1'),
variable_2 = c('Var2', 'No', NA, NA),
variable_3 = c(NA, NA, 'Var3', NA),
variable_4 = c(NA, 'Var4', NA, NA),
variable_5 = c(NA, 'No', 'Var5', NA),
variable_6 = c(NA, NA, 'Var6', NA),
stringsAsFactors = FALSE
)
我知道有很多关于这个主题的问题,所以如果这是一个重复的问题,我深表歉意。我正在尝试将数据集中的多列折叠成一列:
假设这是我正在使用的数据集的结构,
df <- data.frame(
cbind(
variable_1 = c('Var1', NA, NA,'Var1'),
variable_2 = c('Var2', 'No', NA, NA),
variable_3 = c(NA, NA, 'Var3', NA),
variable_4 = c(NA, 'Var4', NA, NA),
variable_5 = c(NA, 'No', 'Var5', NA),
variable_6 = c(NA, NA, 'Var6', NA)
))
variable_1 variable_2 variable_3 variable_4 variable_5 variable_6
Var1 Var2 NA NA NA NA
NA No NA Var4 No NA
NA NA Var3 NA Var5 Var6
Var1 NA NA NA NA NA
我期待的是像这样的一栏 variable_7
variable_1 variable_2 variable_3 variable_4 variable_5 variable_6 variable_7
Var1 Var2 NA NA NA NA Var1, Var2
NA No NA Var4 No NA Var4
NA NA Var3 NA Var5 Var6 Var3, Var5, Var6
Var1 NA NA NA NA NA Var1
非常感谢任何帮助完成此任务的人。
df$variable_7 <- apply(df, 1, function(x) paste(x[!is.na(x) & x != "No"], collapse = ", "));
df;
# variable_1 variable_2 variable_3 variable_4 variable_5 variable_6
#1 Var1 Var2 <NA> <NA> <NA> <NA>
#2 <NA> No <NA> Var4 No <NA>
#3 <NA> <NA> Var3 <NA> Var5 Var6
#4 Var1 <NA> <NA> <NA> <NA> <NA>
# variable_7
#1 Var1, Var2
#2 Var4
#3 Var3, Var5, Var6
#4 Var1
说明:使用 apply
和 paste(..., collapse = ", ")
连接所有行条目(NA
s 和 "No"
s 除外)并存储在新列 variable_7
中.
示例数据
df <- data.frame(
cbind(
variable_1 = c('Var1', NA, NA,'Var1'),
variable_2 = c('Var2', 'No', NA, NA),
variable_3 = c(NA, NA, 'Var3', NA),
variable_4 = c(NA, 'Var4', NA, NA),
variable_5 = c(NA, 'No', 'Var5', NA),
variable_6 = c(NA, NA, 'Var6', NA)
))
我收集到,如果有 n 行,那么 objective 是创建一个 n 向量,其中包含每行中包含字符 Var
的那些值的逗号分隔字符串。 (如果您打算使用其他一些标准来分隔所需值和不需要的值,则相应地更改 grep
。)
apply(df, 1, function(x) toString(grep("Var", x, value = TRUE)))
## [1] "Var1, Var2" "Var4" "Var3, Var5, Var6" "Var1"
使用 data.table
'reshap' 方法而不是 loop/apply
library(data.table)
setDT(df)
df[, id := .I][
melt(df, id.vars = "id")[grepl("Var", value), .(variable_7 = paste0(value, collapse = ",")), by = .(id)]
, on = "id"
, nomatch = 0
][order(id)]
# variable_1 variable_2 variable_3 variable_4 variable_5 variable_6 id variable_7
# 1: Var1 Var2 NA NA NA NA 1 Var1,Var2
# 2: NA No NA Var4 No NA 2 Var4
# 3: NA NA Var3 NA Var5 Var6 3 Var3,Var5,Var6
# 4: Var1 NA NA NA NA NA 4 Var1
使用 dplyr
的解决方案。 df4
是最终输出。请看我是如何创建数据框的 df
。 cbind
不是必需的,最好添加 stringsAsFactors = FALSE
以防止创建因子列。
library(dplyr)
library(tidyr)
df2 <- df %>% mutate(ID = 1:n())
df3 <- df2 %>%
gather(Variable, Value, -ID, na.rm = TRUE) %>%
filter(!Value %in% "No") %>%
group_by(ID) %>%
summarise(variable_7 = toString(Value))
df4 <- df2 %>%
left_join(df3, by = "ID") %>%
select(-ID)
df4
# variable_1 variable_2 variable_3 variable_4 variable_5 variable_6 variable_7
# 1 Var1 Var2 <NA> <NA> <NA> <NA> Var1, Var2
# 2 <NA> No <NA> Var4 No <NA> Var4
# 3 <NA> <NA> Var3 <NA> Var5 Var6 Var3, Var5, Var6
# 4 Var1 <NA> <NA> <NA> <NA> <NA> Var1
数据
df <- data.frame(
variable_1 = c('Var1', NA, NA,'Var1'),
variable_2 = c('Var2', 'No', NA, NA),
variable_3 = c(NA, NA, 'Var3', NA),
variable_4 = c(NA, 'Var4', NA, NA),
variable_5 = c(NA, 'No', 'Var5', NA),
variable_6 = c(NA, NA, 'Var6', NA),
stringsAsFactors = FALSE
)