如何 select 只有 pandas 多索引数据框中的索引列?

How to select ONLY THE INDEX COLUMNS in a pandas multi-index Dataframe?

好的,所以我有一个带有 2 列索引的 DataFrame,我正在尝试从该 DataFrame 中过滤行,并仅将原始数据帧的索引列保留到新过滤的 DataFrame 中。

我通过以下方式从 CSV 文件创建数据框:查找 CSV 文件 here

census_df = pd.read_csv("census.csv", index_col = ["STNAME", "CTYNAME"])
census_df.sort_index(ascending = True)

然后,我对 DataFrame 应用了一些过滤,效果非常好,我得到了所需的行。我使用的代码如下所示:

def my_answer():

    mask1 = census_df["REGION"].between(1, 2)
    mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
    mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
    new_df = census_df[mask1 & mask2 & mask3]
    return pd.DataFrame(new_df.iloc[:, -1])

my_answer()

这是问题所在:

上面的代码 return 是一个数据框,其中包含索引和第一列以及 2 个索引列。我想要的只是两个索引列。 因此,最终答案应该是 return 一个 DATAFRAME,其中包含 "STNAME" 和 "CTYNAME",其中有 5 行。

您可以将 index 转换为 DataFrame:

def my_answer():

    mask1 = census_df["REGION"].between(1, 2)
    mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
    mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
    new_df = census_df[mask1 & mask2 & mask3]
    return pd.DataFrame(new_df.index.tolist(), columns=['STNAME','CTYNAME'])

print (my_answer())

         STNAME            CTYNAME
0          Iowa  Washington County
1     Minnesota  Washington County
2  Pennsylvania  Washington County
3  Rhode Island  Washington County
4     Wisconsin  Washington County

如果想要输出 MultiIndex 需要 MultiIndex.remove_unused_levels,但它在 pandas 0.20.0+ 中工作:

def my_answer():

    mask1 = census_df["REGION"].between(1, 2)
    mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
    mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
    new_df = census_df[mask1 & mask2 & mask3]
    return new_df.index.remove_unused_levels()

print (my_answer())

MultiIndex(levels=[['Iowa', 'Minnesota', 'Pennsylvania', 'Rhode Island', 'Wisconsin'], 
                   ['Washington County']],
           labels=[[0, 1, 2, 3, 4], [0, 0, 0, 0, 0]],
           names=['STNAME', 'CTYNAME'])

使用列表理解:

def my_answer():
     mask1 = census_df["REGION"].between(1, 2)
     mask2 = census_df.index.get_level_values("CTYNAME").str.startswith("Washington")
     mask3 = (census_df["POPESTIMATE2015"] > census_df["POPESTIMATE2014"])
     new_df = census_df[mask1 & mask2 & mask3]

     return pd.DataFrame([new_df.index[x] for x in range(len(new_df))])    

my_answer()

输出:

    0              1
 0  Iowa         Washington County
 1  Minnesota    Washington County
 2  Pennsylvania Washington County
 3  Rhode Island Washington County
 4  Wisconsin    Washington County``