Google 云机器学习内存不足

Google Cloud machine learning out of memory

我在选择以下配置 (config.yaml) 时遇到内存不足的问题:

trainingInput:
  scaleTier: CUSTOM
  masterType: large_model
  workerType: complex_model_m
  parameterServerType: large_model
  workerCount: 10
  parameterServerCount: 10

我正在关注 Google 关于 "criteo_tft" 的教程:https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/criteo_tft/config-large.yaml

link 说他们能够训练 1TB 的数据!我很想试一试!!!

我的数据集是分类数据集,因此它在一次热编码后创建了一个相当大的矩阵(一个大小为 520000 x 4000 的二维 numpy 数组)。我可以在具有 32GB 内存的本地机器上训练我的数据集,但我无法在云中做同样的事情!!!

这是我的错误

ERROR   2017-12-18 12:57:37 +1100   worker-replica-1        Using TensorFlow 
backend.

ERROR   2017-12-18 12:57:37 +1100   worker-replica-4        Using TensorFlow                     
backend.

INFO    2017-12-18 12:57:37 +1100   worker-replica-0        Running command: 
python -m trainer.task --train-file gs://my_bucket/my_training_file.csv --
job-dir gs://my_bucket/my_bucket_20171218_125645

ERROR   2017-12-18 12:57:38 +1100   worker-replica-2        Using TensorFlow 
backend.

ERROR   2017-12-18 12:57:40 +1100   worker-replica-0        Using TensorFlow 
backend.

ERROR   2017-12-18 12:57:53 +1100   worker-replica-3        Command 
'['python', '-m', u'trainer.task', u'--train-file', 
u'gs://my_bucket/my_training_file.csv', '--job-dir', 
u'gs://my_bucket/my_bucket_20171218_125645']' returned non-zero exit status -9

INFO    2017-12-18 12:57:53 +1100   worker-replica-3        Module 
completed; cleaning up.

INFO    2017-12-18 12:57:53 +1100   worker-replica-3        Clean up 
finished.

ERROR   2017-12-18 12:57:56 +1100   worker-replica-4        Command 
'['python', '-m', u'trainer.task', u'--train-file', 
u'gs://my_bucket/my_training_file.csv', '--job-dir', 
u'gs://my_bucket/my_bucket_20171218_125645']' returned non-zero exit status -9

INFO    2017-12-18 12:57:56 +1100   worker-replica-4        Module 
completed; cleaning up.

INFO    2017-12-18 12:57:56 +1100   worker-replica-4        Clean up 
finished.

ERROR   2017-12-18 12:57:58 +1100   worker-replica-2        Command 
'['python', '-m', u'trainer.task', u'--train-file', 
u'gs://my_bucket/my_training_file.csv', '--job-dir', 
u'gs://my_bucket/my_bucket_20171218_125645']' returned non-zero exit status -9

INFO    2017-12-18 12:57:58 +1100   worker-replica-2        Module 
completed; cleaning up.

INFO    2017-12-18 12:57:58 +1100   worker-replica-2        Clean up 
finished.

ERROR   2017-12-18 12:57:59 +1100   worker-replica-1        Command 
'['python', '-m', u'trainer.task', u'--train-file', 
u'gs://my_bucket/my_training_file.csv', '--job-dir', 
u'gs://my_bucket/my_bucket_20171218_125645']' returned non-zero exit status -9

INFO    2017-12-18 12:57:59 +1100   worker-replica-1        Module 
completed; cleaning up.

INFO    2017-12-18 12:57:59 +1100   worker-replica-1        Clean up finished.

ERROR   2017-12-18 12:58:01 +1100   worker-replica-0        Command 
'['python', '-m', u'trainer.task', u'--train-file', 
u'gs://my_bucket/my_training_file.csv', '--job-dir', 
u'gs://my_bucket/my_bucket_20171218_125645']' returned non-zero exit   status -9

INFO    2017-12-18 12:58:01 +1100   worker-replica-0        Module 
completed; cleaning up.

INFO    2017-12-18 12:58:01 +1100   worker-replica-0        Clean up finished.

ERROR   2017-12-18 12:58:43 +1100   service     The replica worker 0 ran 
out-of-memory and exited with a non-zero status of 247. The replica worker 1 
ran out-of-memory and exited with a non-zero status of 247. The replica 
worker 2 ran out-of-memory and exited with a non-zero status of 247. The 
replica worker 3 ran out-of-memory and exited with a non-zero status of 247. 
The replica worker 4 ran out-of-memory and exited with a non-zero status of 
247. To find out more about why your job exited please check the logs:  
https://console.cloud.google.com/logs/viewer?project=a_project_id........(link to to my cloud log)

INFO    2017-12-18 12:58:44 +1100   ps-replica-0        Signal 15 (SIGTERM) 
was caught. Terminated by service. This is normal behavior.

INFO    2017-12-18 12:58:44 +1100   ps-replica-1        Signal 15 (SIGTERM) 
was caught. Terminated by service. This is normal behavior.

INFO    2017-12-18 12:58:44 +1100   ps-replica-0        Module completed; 
cleaning up.

INFO    2017-12-18 12:58:44 +1100   ps-replica-0        Clean up finished.

INFO    2017-12-18 12:58:44 +1100   ps-replica-1        Module completed; 
cleaning up.

INFO    2017-12-18 12:58:44 +1100   ps-replica-1        Clean up finished.

INFO    2017-12-18 12:58:44 +1100   ps-replica-2        Signal 15 
(SIGTERM) was caught. Terminated by service. This is normal behavior.

INFO    2017-12-18 12:58:44 +1100   ps-replica-2        Module completed; 
cleaning up.

INFO    2017-12-18 12:58:44 +1100   ps-replica-2        Clean up finished.

INFO    2017-12-18 12:58:44 +1100   ps-replica-3        Signal 15 (SIGTERM) 
was caught. Terminated by service. This is normal behavior.

INFO    2017-12-18 12:58:44 +1100   ps-replica-5        Signal 15 (SIGTERM) 
was caught. Terminated by service. This is normal behavior.

INFO    2017-12-18 12:58:44 +1100   ps-replica-3        Module completed; 
cleaning up.

INFO    2017-12-18 12:58:44 +1100   ps-replica-3        Clean up finished.

INFO    2017-12-18 12:58:44 +1100   ps-replica-5        Module completed; 
cleaning up.

INFO    2017-12-18 12:58:44 +1100   ps-replica-5        Clean up finished.

INFO    2017-12-18 12:58:44 +1100   ps-replica-4        Signal 15 (SIGTERM) 
was caught. Terminated by service. This is normal behavior.

INFO    2017-12-18 12:58:44 +1100   ps-replica-4        Module completed; 
cleaning up.

INFO    2017-12-18 12:58:44 +1100   ps-replica-4        Clean up finished.

INFO    2017-12-18 12:59:28 +1100   service     Finished tearing down 
TensorFlow.

INFO    2017-12-18 13:00:17 +1100   service     Job failed.##

请不要担心 "Using TensorFlow backend." 错误,因为即使其他较小的数据集的训练工作成功,我也已经知道了。

任何人都可以解释导致 运行 内存不足(错误 247)的原因以及如何编写我的 config.yaml 文件以避免此类问题,并在云中训练我的数据?

我已经解决了这个问题。我需要做几件事:

  1. 更改 tensorflow 版本,尤其是我在云中提交训练作业的方式。

  2. 我切换到 Feature Hashing

  3. 而不是一个热编码 [它为每个添加的新项目创建一个列]

现在它可以训练具有 250 万行和 4200 编码列的分类数据集。