按索引选择 MultiIndex 数据框中的行而不丢失任何级别

Selecting rows in a MultiIndex dataframe by index without losing any levels

我想 select 一个名为 'Mid' 的行,而不丢失它的索引 'Site'

以下代码显示数据框:

m.commodity

                         price  max  maxperstep
Site  Commodity Type
Mid   Biomass   Stock     6.0  inf         inf
      CO2       Env       0.0  inf         inf
      Coal      Stock     7.0  inf         inf
      Elec      Demand    NaN  NaN         NaN
      Gas       Stock    27.0  inf         inf
      Hydro     SupIm     NaN  NaN         NaN
      Lignite   Stock     4.0  inf         inf
      Slack     Stock   999.0  inf         inf
      Solar     SupIm     NaN  NaN         NaN
      Wind      SupIm     NaN  NaN         NaN
North Biomass   Stock     6.0  inf         inf
      CO2       Env       0.0  inf         inf
      Coal      Stock     7.0  inf         inf
      Elec      Demand    NaN  NaN         NaN
      Gas       Stock    27.0  inf         inf
      Hydro     SupIm     NaN  NaN         NaN
      Lignite   Stock     4.0  inf         inf
      Slack     Stock   999.0  inf         inf
      Solar     SupIm     NaN  NaN         NaN
      Wind      SupIm     NaN  NaN         NaN
South Biomass   Stock     6.0  inf         inf
      CO2       Env       0.0  inf         inf
      Coal      Stock     7.0  inf         inf
      Elec      Demand    NaN  NaN         NaN
      Gas       Stock    27.0  inf         inf
      Hydro     SupIm     NaN  NaN         NaN
      Lignite   Stock     4.0  inf         inf
      Slack     Stock   999.0  inf         inf
      Solar     SupIm     NaN  NaN         NaN
      Wind      SupIm     NaN  NaN         NaN

期望的结果如下:

                         price  max  maxperstep
Site  Commodity Type
Mid   Biomass   Stock     6.0  inf         inf
      CO2       Env       0.0  inf         inf
      Coal      Stock     7.0  inf         inf
      Elec      Demand    NaN  NaN         NaN
      Gas       Stock    27.0  inf         inf
      Hydro     SupIm     NaN  NaN         NaN
      Lignite   Stock     4.0  inf         inf
      Slack     Stock   999.0  inf         inf
      Solar     SupIm     NaN  NaN         NaN
      Wind      SupIm     NaN  NaN         NaN

以下答案给出了预期的结果:

m.commodity.xs('Mid', drop_level=False)
m.commodity.loc[['Mid']]
m.commodity.loc['Mid', :, :]

ty MaxU、COLDSPEED 和 jezrael 的答案:)

我相信你需要xs:

df = m.commodity.xs('Mid', drop_level=False)

print (df)
b                       price  max  maxperstep
Site Commodity Type                          
Mid  Biomass   Stock     6.0  inf         inf
     CO2       Env       0.0  inf         inf
     Coal      Stock     7.0  inf         inf
     Elec      Demand    NaN  NaN         NaN
     Gas       Stock    27.0  inf         inf
     Hydro     SupIm     NaN  NaN         NaN
     Lignite   Stock     4.0  inf         inf
     Slack     Stock   999.0  inf         inf
     Solar     SupIm     NaN  NaN         NaN
     Wind      SupIm     NaN  NaN         NaN

对于你来说,另一个问题最好检查 or

In [59]: df.loc['Mid', :, :]
Out[59]:
                       price  max  maxperstep
Site Commodity Type
Mid  Biomass   Stock     6.0  inf         inf
     CO2       Env       0.0  inf         inf
     Coal      Stock     7.0  inf         inf
     Elec      Demand    NaN  NaN         NaN
     Gas       Stock    27.0  inf         inf
     Hydro     SupIm     NaN  NaN         NaN
     Lignite   Stock     4.0  inf         inf
     Slack     Stock   999.0  inf         inf
     Solar     SupIm     NaN  NaN         NaN
     Wind      SupIm     NaN  NaN         NaN

您也可以使用带双大括号的 loc

df.loc[['Mid']]

                       price  max  maxperstep
Site Commodity Type
Mid  Biomass   Stock     6.0  inf         inf
     CO2       Env       0.0  inf         inf
     Coal      Stock     7.0  inf         inf
     Elec      Demand    NaN  NaN         NaN
     Gas       Stock    27.0  inf         inf
     Hydro     SupIm     NaN  NaN         NaN
     Lignite   Stock     4.0  inf         inf
     Slack     Stock   999.0  inf         inf
     Solar     SupIm     NaN  NaN         NaN
     Wind      SupIm     NaN  NaN         NaN

在你的情况下,我想应该是 m.commodity.loc[['Mid']]

当谈论 locix 时,后者已被弃用,请使用 loc/iloc/iat/xs用于索引。

ix 对传递的内容做出假设,并接受标签或位置。 loc 纯粹基于标签,而 iloc 纯粹是索引(基于位置)