类 的 TensorFlow 估计器数量不变
TensorFlow estimator number of classes does not change
我尝试对 MNIST 数据集使用 tensorflow 估计器。出于某种原因,它一直说我的 n_classes
设置为 1,即使它是 10!
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
feature_columns = [tf.feature_column.numeric_column("x", shape=[784])]
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[500, 500, 500],
n_classes=10,
model_dir="/tmp/MT")
for i in range(100000):
xdata, ydata = mnist.train.next_batch(500)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x":xdata},
y=ydata,
num_epochs=None,
shuffle=True)
classifier.train(input_fn=train_input_fn, steps=2000)
# Define the test inputs
test_input_fn = tf.estimator.inputs.numpy_input_fn(
x= {"x":mnist.test.images},
y= mnist.test.labels,
num_epochs=1,
shuffle=False)
# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
错误:
ValueError: Mismatched label shape. Classifier configured with n_classes=1. Received 10. Suggested Fix: check your n_classes argument to the estimator and/or the shape of your label.
Process finished with exit code 1
这是个好问题。 tf.estimator.DNNClassifier
is using tf.losses.sparse_softmax_cross_entropy
loss, in other words it expects ordinal encoding, instead of one-hot (can't find it in the doc, only the source code):
labels
must be a dense Tensor
with shape matching logits
, namely
[D0, D1, ... DN, 1]
. If label_vocabulary
given, labels
must be a string
Tensor
with values from the vocabulary. If label_vocabulary
is not given,
labels
must be an integer Tensor
with values specifying the class index.
您应该使用 one_hot=False
读取数据并将标签转换为 int32 以使其工作:
y=ydata.astype(np.int32)
我尝试对 MNIST 数据集使用 tensorflow 估计器。出于某种原因,它一直说我的 n_classes
设置为 1,即使它是 10!
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
feature_columns = [tf.feature_column.numeric_column("x", shape=[784])]
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[500, 500, 500],
n_classes=10,
model_dir="/tmp/MT")
for i in range(100000):
xdata, ydata = mnist.train.next_batch(500)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x":xdata},
y=ydata,
num_epochs=None,
shuffle=True)
classifier.train(input_fn=train_input_fn, steps=2000)
# Define the test inputs
test_input_fn = tf.estimator.inputs.numpy_input_fn(
x= {"x":mnist.test.images},
y= mnist.test.labels,
num_epochs=1,
shuffle=False)
# Evaluate accuracy.
accuracy_score = classifier.evaluate(input_fn=test_input_fn)["accuracy"]
print("\nTest Accuracy: {0:f}\n".format(accuracy_score))
错误:
ValueError: Mismatched label shape. Classifier configured with n_classes=1. Received 10. Suggested Fix: check your n_classes argument to the estimator and/or the shape of your label.
Process finished with exit code 1
这是个好问题。 tf.estimator.DNNClassifier
is using tf.losses.sparse_softmax_cross_entropy
loss, in other words it expects ordinal encoding, instead of one-hot (can't find it in the doc, only the source code):
labels
must be a denseTensor
with shape matchinglogits
, namely[D0, D1, ... DN, 1]
. Iflabel_vocabulary
given,labels
must be a stringTensor
with values from the vocabulary. Iflabel_vocabulary
is not given,labels
must be an integerTensor
with values specifying the class index.
您应该使用 one_hot=False
读取数据并将标签转换为 int32 以使其工作:
y=ydata.astype(np.int32)