java.util.ConcurrentModificationException: KafkaConsumer 多线程访问不安全

java.util.ConcurrentModificationException: KafkaConsumer is not safe for multi-threaded access

我有一个 Scala Spark Streaming 应用程序,它从 3 个不同的 Kafka producers 接收来自同一主题的数据。

Spark 流应用程序在主机 0.0.0.179 的机器上,Kafka 服务器在主机 0.0.0.178 的机器上,Kafka producers 在主机 0.0.0.180 上, 0.0.0.181, 0.0.0.182.

当我尝试 运行 时,Spark Streaming 应用程序出现以下错误

Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 19.0 failed 1 times, most recent failure: Lost task 0.0 in stage 19.0 (TID 19, localhost): java.util.ConcurrentModificationException: KafkaConsumer is not safe for multi-threaded access at org.apache.kafka.clients.consumer.KafkaConsumer.acquire(KafkaConsumer.java:1625) at org.apache.kafka.clients.consumer.KafkaConsumer.seek(KafkaConsumer.java:1198) at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.seek(CachedKafkaConsumer.scala:95) at org.apache.spark.streaming.kafka010.CachedKafkaConsumer.get(CachedKafkaConsumer.scala:69) at org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.next(KafkaRDD.scala:228) at org.apache.spark.streaming.kafka010.KafkaRDD$KafkaRDDIterator.next(KafkaRDD.scala:194) at scala.collection.Iterator$$anon.next(Iterator.scala:409) at scala.collection.Iterator$$anon.next(Iterator.scala:409) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$$anonfun$$anonfun$apply.apply$mcV$sp(PairRDDFunctions.scala:1204) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$$anonfun$$anonfun$apply.apply(PairRDDFunctions.scala:1203) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$$anonfun$$anonfun$apply.apply(PairRDDFunctions.scala:1203) at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1325) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$$anonfun.apply(PairRDDFunctions.scala:1211) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$$anonfun.apply(PairRDDFunctions.scala:1190) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70) at org.apache.spark.scheduler.Task.run(Task.scala:85) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:748)

现在我阅读了数千篇不同的帖子,但似乎没有人能够找到解决这个问题的方法。

我该如何处理我的申请?我是否必须修改 Kakfa 上的某些参数(目前 num.partition 参数设置为 1)?

以下是我的应用程序代码:

// Create the context with a 5 second batch size
val sparkConf = new SparkConf().setAppName("SparkScript").set("spark.driver.allowMultipleContexts", "true").set("spark.streaming.concurrentJobs", "3").setMaster("local[4]")
val sc = new SparkContext(sparkConf)

val ssc = new StreamingContext(sc, Seconds(3))

case class Thema(name: String, metadata: String)
case class Tempo(unit: String, count: Int, metadata: String)
case class Spatio(unit: String, metadata: String)
case class Stt(spatial: Spatio, temporal: Tempo, thematic: Thema)
case class Location(latitude: Double, longitude: Double, name: String)

case class Datas1(location : Location, timestamp : String, windspeed : Double, direction: String, strenght : String)
case class Sensors1(sensor_name: String, start_date: String, end_date: String, data1: Datas1, stt: Stt)    


val kafkaParams = Map[String, Object](
    "bootstrap.servers" -> "0.0.0.178:9092",
    "key.deserializer" -> classOf[StringDeserializer].getCanonicalName,
    "value.deserializer" -> classOf[StringDeserializer].getCanonicalName,
    "group.id" -> "test_luca",
    "auto.offset.reset" -> "earliest",
    "enable.auto.commit" -> (false: java.lang.Boolean)
)

val topics1 = Array("topics1")

  val s1 = KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topics1, kafkaParams)).map(record => {
    implicit val formats = DefaultFormats
    parse(record.value).extract[Sensors1]
  } 
  )      
  s1.print()
  s1.saveAsTextFiles("results/", "")
ssc.start()
ssc.awaitTermination()

谢谢

你的问题在这里:

s1.print()
s1.saveAsTextFiles("results/", "")

由于 Spark 创建了流图,并且您在此处定义了两个流:

Read from Kafka -> Print to console
Read from Kafka -> Save to text file

Spark 将尝试同时 运行 这两个图,因为它们彼此独立。由于 Kafka 使用缓存消费者方法,因此它实际上是在尝试对两个流执行使用相同的消费者。

您可以做的是在 运行 执行两个查询之前缓存 DStream

val dataFromKafka = KafkaUtils.createDirectStream[String, String](ssc, PreferConsistent, Subscribe[String, String](topics1, kafkaParams)).map(/* stuff */)

val cachedStream = dataFromKafka.cache()
cachedStream.print()
cachedStream.saveAsTextFiles("results/", "")

使用缓存对我有用。在我的例子中,打印、转换然后在 JavaPairDstream 上打印给了我那个错误。 我在第一次打印之前使用了缓存,它对我有用。

s1.print()
s1.saveAsTextFiles("results/", "")

下面的代码可以工作,我使用了类似的代码。

s1.cache();
s1.print();
s1.saveAsTextFiles("results/", "");