如何"flatten"变量

How to "flatten" variable

有时,通常在卷积层之后,可以找到形式为(宽度,高度,深度)的形状,其中深度是卷积操作的过滤器数量。

我想将 GoogleNet 初始模块和 "squish"(宽度、高度、深度)重现为(宽度、高度、f(深度)),其中 f 会产生一个标量值。

我知道有 CNTKLib.Splice 但这不是我需要的。我需要得到具有 (x, y) 坐标的列中所有值的加权和。

如何在 C# 中完成 API?

编辑: 添加代码示例

    public static void PrintOutputDims(Function source)
    {
        var shape = source.Output.Shape;

        var sb = new string[shape.Rank];
        for (var i = 0; i < shape.Rank; ++i)
        {
            sb[i] = ($"dim{i}: {shape[i]}");
        }

        Console.WriteLine(string.Join(", ", sb));
    }

    static void Main(string[] args)
    {
        var variable = CNTKLib.InputVariable(NDShape.CreateNDShape(new[] { 100, 100, 20 }), DataType.Float, "source");
        PrintOutputDims(variable); // dim0: 100, dim1: 100, dim2: 20
        var squished = Squish(variable);
        PrintOutputDims(variable); // dim0: 100, dim1: 100, dim2: 1
    }

如何实现Squish功能?

您可以使用 ReduceSum/ReduceLogSum/ReduceMean/etc。轴 = 2

答案是这样的:

    public static Function SpatialReduceWeightedSum(this Function source, DeviceDescriptor device)
    {
        var sourceShape = source.Output.Shape;
        if (sourceShape.Rank != 3)
        {
            throw new ArgumentException("exected rank = 3 but was: " + sourceShape.Rank);
        }

        var sourceDimensions = sourceShape.Dimensions;
        var blocksCount = sourceDimensions[0] * sourceDimensions[1];
        var temporaryDimensions = new[]
                                      {
                                          blocksCount,
                                          sourceDimensions[2]
                                      };
        var temporatyShape = NDShape.CreateNDShape(temporaryDimensions);
        var reshaped = CNTKLib.Reshape(source, temporatyShape);

        var initializer = CNTKLib.ConstantInitializer(1d);
        var axis0 = new Axis(0);
        var axis1 = new Axis(1);
        var axisVector = new AxisVector() { axis0 };
        var weightedSums = new Variable[blocksCount];
        for (var i = 0; i < blocksCount; i++)
        {
            var beginIndex = new IntVector() { i };
            var endIndex = new IntVector() { i + 1 };
            var block = CNTKLib.Slice(reshaped, axisVector, beginIndex, endIndex);
            var blockShape = NDShape.CreateNDShape(block.Output.Shape.Dimensions.Reverse());
            var blockParameters = new Parameter(blockShape, DataType.Float, initializer, device);

            var weightedBlock = CNTKLib.Times(block, blockParameters);
            weightedSums[i] = CNTKLib.ReduceSum(weightedBlock, axis1);
        }

        var combined = CNTKLib.Splice(new VariableVector(weightedSums), axis0);

        var flatShapeDimensions = new[]
                                      {
                                          sourceDimensions[0],
                                          sourceDimensions[1],
                                          1
                                      };
        var flatShape = NDShape.CreateNDShape(flatShapeDimensions);

        return CNTKLib.Reshape(combined, flatShape);
    }