使用来自 Spark 驱动程序的 Java 的本机 readObject 进行反序列化时出现 ClassCastException
ClassCastException while deserializing with Java's native readObject from Spark driver
我有两个 spark 作业 A 和 B,因此 A 必须在 B 之前 运行。A 的输出必须可读自:
- Spark 作业 B
- Spark 环境之外的独立 Scala 程序(没有 Spark 依赖)
我目前正在使用 Java 的原生序列化和 Scala 案例 类。
来自 A Spark 作业:
val model = ALSFactorizerModel(...)
context.writeSerializable(resultOutputPath, model)
序列化方法:
def writeSerializable[T <: Serializable](path: String, obj: T): Unit = {
val writer: OutputStream = ... // Google Cloud Storage dependant
val oos: ObjectOutputStream = new ObjectOutputStream(writer)
oos.writeObject(obj)
oos.close()
writer.close()
}
来自 B Spark 作业或任何独立的非 Spark Scala 代码:
val lastFactorizerModel: ALSFactorizerModel = context
.readSerializable[ALSFactorizerModel](ALSFactorizer.resultOutputPath)
使用反序列化方法:
def readSerializable[T <: Serializable](path: String): T = {
val is : InputStream = ... // Google Cloud Storage dependant
val ois = new ObjectInputStream(is)
val model: T = ois
.readObject()
.asInstanceOf[T]
ois.close()
is.close()
model
}
(嵌套)案例 类:
ALSFactorizerModel:
package mycompany.algo.als.common.io.model.factorizer
import mycompany.data.item.ItemStore
@SerialVersionUID(1L)
final case class ALSFactorizerModel(
knownItems: Array[ALSFeaturedKnownItem],
unknownItems: Array[ALSFeaturedUnknownItem],
rank: Int,
modelTS: Long,
itemRepositoryTS: Long,
stores: Seq[ItemStore]
) {
}
物品商店:
package mycompany.data.item
@SerialVersionUID(1L)
final case class ItemStore(
id: String,
tenant: String,
name: String,
index: Int
) {
}
输出:
- 来自独立的非 Spark Scala 程序 => OK
- 来自 B Spark 作业 运行在我的开发机器上本地(Spark 独立本地节点)=> OK
- 来自 B Spark 作业 运行在 (Dataproc) Spark 集群上 => 失败,出现以下异常:
异常:
java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field mycompany.algo.als.common.io.model.factorizer.ALSFactorizerModel.stores of type scala.collection.Seq in instance of mycompany.algo.als.common.io.model.factorizer.ALSFactorizerModel
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2251)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2169)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2027)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1535)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:422)
at mycompany.fs.gcs.SimpleGCSFileSystem.readSerializable(SimpleGCSFileSystem.scala:71)
at mycompany.algo.als.batch.strategy.ALSClusterer$.run(ALSClusterer.scala:38)
at mycompany.batch.SinglePredictorEbapBatch$$anonfun.apply(SinglePredictorEbapBatch.scala:55)
at mycompany.batch.SinglePredictorEbapBatch$$anonfun.apply(SinglePredictorEbapBatch.scala:55)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at scala.concurrent.impl.ExecutionContextImpl$AdaptedForkJoinTask.exec(ExecutionContextImpl.scala:121)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
我是不是漏掉了什么?我是否应该配置 Dataproc/Spark 以支持对此代码使用 Java 序列化?
我用 --jars <path to my fatjar>
提交作业,之前从未遇到过其他问题。 spark依赖不包含在这个Jar中,范围是Provided
.
Scala 版本:2.11.8
Spark 版本:2.0.2
SBT 版本: 0.13.13
感谢您的帮助
用 stores: Array[ItemStore]
替换 stores: Seq[ItemStore]
已经解决了我们的问题。
或者我们可以使用另一个 class 加载器来执行 ser/deser-ialization 操作。
希望这会有所帮助。
我有两个 spark 作业 A 和 B,因此 A 必须在 B 之前 运行。A 的输出必须可读自:
- Spark 作业 B
- Spark 环境之外的独立 Scala 程序(没有 Spark 依赖)
我目前正在使用 Java 的原生序列化和 Scala 案例 类。
来自 A Spark 作业:
val model = ALSFactorizerModel(...)
context.writeSerializable(resultOutputPath, model)
序列化方法:
def writeSerializable[T <: Serializable](path: String, obj: T): Unit = {
val writer: OutputStream = ... // Google Cloud Storage dependant
val oos: ObjectOutputStream = new ObjectOutputStream(writer)
oos.writeObject(obj)
oos.close()
writer.close()
}
来自 B Spark 作业或任何独立的非 Spark Scala 代码:
val lastFactorizerModel: ALSFactorizerModel = context
.readSerializable[ALSFactorizerModel](ALSFactorizer.resultOutputPath)
使用反序列化方法:
def readSerializable[T <: Serializable](path: String): T = {
val is : InputStream = ... // Google Cloud Storage dependant
val ois = new ObjectInputStream(is)
val model: T = ois
.readObject()
.asInstanceOf[T]
ois.close()
is.close()
model
}
(嵌套)案例 类:
ALSFactorizerModel:
package mycompany.algo.als.common.io.model.factorizer
import mycompany.data.item.ItemStore
@SerialVersionUID(1L)
final case class ALSFactorizerModel(
knownItems: Array[ALSFeaturedKnownItem],
unknownItems: Array[ALSFeaturedUnknownItem],
rank: Int,
modelTS: Long,
itemRepositoryTS: Long,
stores: Seq[ItemStore]
) {
}
物品商店:
package mycompany.data.item
@SerialVersionUID(1L)
final case class ItemStore(
id: String,
tenant: String,
name: String,
index: Int
) {
}
输出:
- 来自独立的非 Spark Scala 程序 => OK
- 来自 B Spark 作业 运行在我的开发机器上本地(Spark 独立本地节点)=> OK
- 来自 B Spark 作业 运行在 (Dataproc) Spark 集群上 => 失败,出现以下异常:
异常:
java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field mycompany.algo.als.common.io.model.factorizer.ALSFactorizerModel.stores of type scala.collection.Seq in instance of mycompany.algo.als.common.io.model.factorizer.ALSFactorizerModel
at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2251)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:2169)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2027)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1535)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:422)
at mycompany.fs.gcs.SimpleGCSFileSystem.readSerializable(SimpleGCSFileSystem.scala:71)
at mycompany.algo.als.batch.strategy.ALSClusterer$.run(ALSClusterer.scala:38)
at mycompany.batch.SinglePredictorEbapBatch$$anonfun.apply(SinglePredictorEbapBatch.scala:55)
at mycompany.batch.SinglePredictorEbapBatch$$anonfun.apply(SinglePredictorEbapBatch.scala:55)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1(Future.scala:24)
at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
at scala.concurrent.impl.ExecutionContextImpl$AdaptedForkJoinTask.exec(ExecutionContextImpl.scala:121)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
我是不是漏掉了什么?我是否应该配置 Dataproc/Spark 以支持对此代码使用 Java 序列化?
我用 --jars <path to my fatjar>
提交作业,之前从未遇到过其他问题。 spark依赖不包含在这个Jar中,范围是Provided
.
Scala 版本:2.11.8 Spark 版本:2.0.2 SBT 版本: 0.13.13
感谢您的帮助
用 stores: Array[ItemStore]
替换 stores: Seq[ItemStore]
已经解决了我们的问题。
或者我们可以使用另一个 class 加载器来执行 ser/deser-ialization 操作。
希望这会有所帮助。