Keras:如何将学习率输出到张量板上

Keras: how to output learning rate onto tensorboard

我添加了一个回调来降低学习率:

 keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100, 
                                   verbose=0, mode='auto',epsilon=0.00002, cooldown=20, min_lr=0)

这是我的张量板回调:

keras.callbacks.TensorBoard(log_dir='./graph/rank{}'.format(hvd.rank()), histogram_freq=10, batch_size=FLAGS.batch_size,
                            write_graph=True, write_grads=True, write_images=False)

我想确保学习率调度程序在训练期间启动,所以我想将学习率输出到张量板上。但是我找不到哪里可以设置它。

我也检查了优化器 api,但没有运气。

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

如何将学习率输出到tensorboad?

您给了优化器代码两次,而不是 TensorBoard Callback。反正我没找到在TensorBoard上显示学习率的方法。 我在训练结束后绘制它,从历史对象中获取数据:

nb_epoch = len(history1.history['loss'])
learning_rate=history1.history['lr']
xc=range(nb_epoch)
plt.figure(3,figsize=(7,5))
plt.plot(xc,learning_rate)
plt.xlabel('num of Epochs')
plt.ylabel('learning rate')
plt.title('Learning rate')
plt.grid(True)
plt.style.use(['seaborn-ticks'])

图表如下所示: LR plot

抱歉,这不是您要问的问题,但也许可以提供帮助。

According to the author of Keras正确的方法是继承TensorBoard回调:

from keras import backend as K
from keras.callbacks import TensorBoard

class LRTensorBoard(TensorBoard):
    # add other arguments to __init__ if you need
    def __init__(self, log_dir, **kwargs):
        super().__init__(log_dir=log_dir, **kwargs)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        logs.update({'lr': K.eval(self.model.optimizer.lr)})
        super().on_epoch_end(epoch, logs)

然后将其作为 callbacks 参数的一部分传递给 model.fit(信用 ):

model.fit(x=..., y=..., callbacks=[LRTensorBoard(log_dir="/tmp/tb_log")])
class XTensorBoard(TensorBoard):
    def on_epoch_begin(self, epoch, logs=None):
        # get values
        lr = float(K.get_value(self.model.optimizer.lr))
        decay = float(K.get_value(self.model.optimizer.decay))
        # computer lr
        lr = lr * (1. / (1 + decay * epoch))
        K.set_value(self.model.optimizer.lr, lr)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        logs['lr'] = K.get_value(self.model.optimizer.lr)
        super().on_epoch_end(epoch, logs)

callbacks_list = [XTensorBoard('./logs')]
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=20, batch_size=32, verbose=2, callbacks=callbacks_list)

lr curve in tensorboard

请注意,当前的 tf 夜间版本(2.5 - 可能更早)学习率使用 LearningRateSchedule are automatically added to tensorboard's logs. The following solution is only necessary if you're adapting the learning rate some other way - e.g. via ReduceLROnPlateau or LearningRateScheduler (different to LearningRateSchedule) 回调。

虽然扩展 tf.keras.callbacks.TensorBoard 是一个可行的选择,但我更喜欢组合而不是子类化。

class LearningRateLogger(tf.keras.callbacks.Callback):
    def __init__(self):
        super().__init__()
        self._supports_tf_logs = True

    def on_epoch_end(self, epoch, logs=None):
        if logs is None or "learning_rate" in logs:
            return
        logs["learning_rate"] = self.model.optimizer.lr

这允许我们组合多个类似的回调,并在多个其他回调中使用记录的学习率(例如,如果您添加 CSVLogger 它也应该将学习率值写入文件)。

然后在model.fit

model.fit(
    callbacks=[
        LearningRateLogger(),
        # other callbacks that update `logs`
        tf.keras.callbacks.TensorBoard(path),
        # other callbacks that use updated logs, e.g. CSVLogger
    ],
    **kwargs
)

对于 tensorflow 2.5,如果您有一些自定义学习率调度程序:

class LearningRateLogger(tf.keras.callbacks.Callback):
def __init__(self, log_dir):
    super().__init__()
    self._supports_tf_logs = True
    self.log_dir = log_dir
    
def set_model(self, model):                                                                                                                                                                                                                                       
    self.model = model                                                                                                                                                                                                                                            
    self.sess = tf.compat.v1.keras.backend.get_session()
    self.writer = tf.summary.create_file_writer(self.log_dir)

def on_epoch_end(self, epoch, logs=None):
    if logs is None or "learning_rate" in logs:
        return
    logs["learning_rate"] = self.model.optimizer.lr
    logs.update({'learning_rate': self.model.optimizer.lr})
    self._write_logs(logs, epoch)
    
def _write_logs(self, logs, index):

    with self.writer.as_default():                                                                                                                                                                                                                               
        for name, value in logs.items():                                                                                                                                                                                                                              
            if name in ['batch', 'size']:                                                                                                                                                                                                                             
                continue                                                                                                                                                                                                                    
            if isinstance(value, np.ndarray):
                tf.summary.scalar(name, value.item(), step=index)                                                                                                                                                                                                             
            else:
                tf.summary.scalar(name, value, step=index)
    
        self.writer.flush()

然后在您的 model.fit 中调用回调:

model.fit(x=..., y=..., callbacks=[LearningRateLogger(log_dir="/path/to/folder/where/tensorboard/is/logging")])