KDTree 正在返回半径之外的点
KDTree is Returning Points Outside of Radius
我有一个经纬度坐标数组,我正在尝试使用 KDTree 和 scipy 的 query_ball_point
到 return 1 英里半径范围内的所有数据点指定经纬度。
问题是 query_ball_point
是 return 指定 1 英里半径之外的点。这是我的代码:
import pandas as pd
import scipy as sp
import geocoder
import pysal as psl
search_list = df['coordinates'].tolist()
tree = psl.cg.KDTree(search_list, distance_metric='Arc', radius=psl.cg.RADIUS_EARTH_MILES)
latlong = (39.698840000000004, -104.975916)
index = tree.query_ball_point(latlong,r=1)
结果是一个坐标数组,如下所示:
+---------------------------------------+
| coordinates |
+---------------------------------------+
| (39.676973877551, -104.966231826172) |
| (39.6777407534644, -104.988982458831) |
| ... |
+---------------------------------------+
当我尝试使用半正弦公式验证这些结果时,我看到第一个坐标是 1.6 英里的距离
from haversine import haversine
haversine((39.676973877551, -104.966231826172),
(39.698840000000004, -104.975916),miles=True)
1.5961362762187963
Pysal 不使用 haversine 函数来计算 query_ball_point 方法的距离。它使用pysal.cg.sphere.arcdist函数,这是不同的。
import pysal
from pysal.cg.kdtree import KDTree
locations = [(40.702566, -73.816859),
(40.70546, -73.810708),
(40.709179, -73.820574),
(40.700486, -73.807969),
(40.694624, -73.820593),
(40.695132, -73.820841),
(40.694095, -73.821334),
(40.694165, -73.822368),
(40.695077, -73.822817),
(40.6747769261, -73.8092618174)]
tree = KDTree(locations, distance_metric='Arc', radius=pysal.cg.RADIUS_EARTH_MILES)
current_point = (40.709523, -73.802472)
# get all points within X miles of 'current_point'
indices = tree.query_ball_point(current_point, 1)
for i in indices:
print(locations[i])
1 英里内有 3 个点
(40.70546, -73.810708)
(40.700486, -73.807969)
(40.6747769261, -73.8092618174)
根据 haversine 公式,并非所有这些点都在 1 英里以内:
from haversine import haversine
for i in indices:
print(haversine(current_points, locations[i], miles = True))
0.5146716729994124
0.6875825817591269
2.4269297885659022
但是根据 pysal 的 arcdist 公式使用 3958.756 英里的半径,它们在 1 英里以内:
from pysal.cg.sphere import arcdist
for i in indices:
print(arcdist(current_points, locations[i], 3958.756))
0.5744128196875283
0.4178272122350164
0.8175408580090955
PySAL 期望输入为 (longitude, latitude)(即 x,y),而半正弦 python 包期望(latitude,经度)。否则 arcdist 和 haversine 应该 return 接近相同的结果。
from libpysal.cg.sphere import arcdist, RADIUS_EARTH_MILES
from haversine import haversine
locations = [(40.702566, -73.816859),
(40.70546, -73.810708),
(40.709179, -73.820574),
(40.700486, -73.807969),
(40.694624, -73.820593),
(40.695132, -73.820841),
(40.694095, -73.821334),
(40.694165, -73.822368),
(40.695077, -73.822817),
(40.6747769261, -73.8092618174)]
current_point = (40.709523, -73.802472)
H = [haversine(current_point, loc, unit='mi') for loc in locations]
print(', '.join(["%0.5f"%dist for dist in H]))
A = [arcdist(current_point[::-1], loc[::-1], radius=RADIUS_EARTH_MILES) for loc in locations]
print(', '.join(["%0.5f"%dist for dist in A]))
print(', '.join(['%0.8f'%(h-a) for h,a in zip(H,A)]))
输出:
0.89381, 0.51467, 0.94839, 0.68758, 1.40024, 1.38364, 1.45343, 1.48732, 1.46011, 2.42693
0.89381, 0.51467, 0.94838, 0.68758, 1.40024, 1.38364, 1.45343, 1.48732, 1.46011, 2.42693
0.00000123, 0.00000071, 0.00000131, 0.00000095, 0.00000193, 0.00000191, 0.00000201, 0.00000205, 0.00000202, 0.00000335
我有一个经纬度坐标数组,我正在尝试使用 KDTree 和 scipy 的 query_ball_point
到 return 1 英里半径范围内的所有数据点指定经纬度。
问题是 query_ball_point
是 return 指定 1 英里半径之外的点。这是我的代码:
import pandas as pd
import scipy as sp
import geocoder
import pysal as psl
search_list = df['coordinates'].tolist()
tree = psl.cg.KDTree(search_list, distance_metric='Arc', radius=psl.cg.RADIUS_EARTH_MILES)
latlong = (39.698840000000004, -104.975916)
index = tree.query_ball_point(latlong,r=1)
结果是一个坐标数组,如下所示:
+---------------------------------------+
| coordinates |
+---------------------------------------+
| (39.676973877551, -104.966231826172) |
| (39.6777407534644, -104.988982458831) |
| ... |
+---------------------------------------+
当我尝试使用半正弦公式验证这些结果时,我看到第一个坐标是 1.6 英里的距离
from haversine import haversine
haversine((39.676973877551, -104.966231826172),
(39.698840000000004, -104.975916),miles=True)
1.5961362762187963
Pysal 不使用 haversine 函数来计算 query_ball_point 方法的距离。它使用pysal.cg.sphere.arcdist函数,这是不同的。
import pysal
from pysal.cg.kdtree import KDTree
locations = [(40.702566, -73.816859),
(40.70546, -73.810708),
(40.709179, -73.820574),
(40.700486, -73.807969),
(40.694624, -73.820593),
(40.695132, -73.820841),
(40.694095, -73.821334),
(40.694165, -73.822368),
(40.695077, -73.822817),
(40.6747769261, -73.8092618174)]
tree = KDTree(locations, distance_metric='Arc', radius=pysal.cg.RADIUS_EARTH_MILES)
current_point = (40.709523, -73.802472)
# get all points within X miles of 'current_point'
indices = tree.query_ball_point(current_point, 1)
for i in indices:
print(locations[i])
1 英里内有 3 个点
(40.70546, -73.810708)
(40.700486, -73.807969)
(40.6747769261, -73.8092618174)
根据 haversine 公式,并非所有这些点都在 1 英里以内:
from haversine import haversine
for i in indices:
print(haversine(current_points, locations[i], miles = True))
0.5146716729994124
0.6875825817591269
2.4269297885659022
但是根据 pysal 的 arcdist 公式使用 3958.756 英里的半径,它们在 1 英里以内:
from pysal.cg.sphere import arcdist
for i in indices:
print(arcdist(current_points, locations[i], 3958.756))
0.5744128196875283
0.4178272122350164
0.8175408580090955
PySAL 期望输入为 (longitude, latitude)(即 x,y),而半正弦 python 包期望(latitude,经度)。否则 arcdist 和 haversine 应该 return 接近相同的结果。
from libpysal.cg.sphere import arcdist, RADIUS_EARTH_MILES
from haversine import haversine
locations = [(40.702566, -73.816859),
(40.70546, -73.810708),
(40.709179, -73.820574),
(40.700486, -73.807969),
(40.694624, -73.820593),
(40.695132, -73.820841),
(40.694095, -73.821334),
(40.694165, -73.822368),
(40.695077, -73.822817),
(40.6747769261, -73.8092618174)]
current_point = (40.709523, -73.802472)
H = [haversine(current_point, loc, unit='mi') for loc in locations]
print(', '.join(["%0.5f"%dist for dist in H]))
A = [arcdist(current_point[::-1], loc[::-1], radius=RADIUS_EARTH_MILES) for loc in locations]
print(', '.join(["%0.5f"%dist for dist in A]))
print(', '.join(['%0.8f'%(h-a) for h,a in zip(H,A)]))
输出:
0.89381, 0.51467, 0.94839, 0.68758, 1.40024, 1.38364, 1.45343, 1.48732, 1.46011, 2.42693
0.89381, 0.51467, 0.94838, 0.68758, 1.40024, 1.38364, 1.45343, 1.48732, 1.46011, 2.42693
0.00000123, 0.00000071, 0.00000131, 0.00000095, 0.00000193, 0.00000191, 0.00000201, 0.00000205, 0.00000202, 0.00000335