RDD 中的元组数量限制;读取 RDD 抛出 arrayIndexOutOfBoundsException

number of tuples limit in RDD; reading RDD throws arrayIndexOutOfBoundsException

我尝试将包含 25 列的 table 的 DF 修改为 RDD。此后我开始知道 Scala(直到 2.11.8)有最多可以使用 22 个元组的限制。

val rdd = sc.textFile("/user/hive/warehouse/myDB.db/myTable/")
rdd: org.apache.spark.rdd.RDD[String] = /user/hive/warehouse/myDB.db/myTable/ MapPartitionsRDD[3] at textFile at <console>:24

示例数据:

[2017-02-26, 100052-ACC, 100052, 3260, 1005, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]

访问每一列:

val rdd3 = rdd.map(elements => {
val el = elements.split(",")
(el(0).substring(1,11).toString, el(1).toString ,el(2).toInt, el(3).toInt, el(4).toInt, el(5).sum.toDouble, el(6).sum.toDouble, el(7).sum.toDouble, el(8).sum.toDouble, el(9).sum.toDouble, el(10).sum.toDouble, el(11).sum.toDouble, el(12).sum.toDouble, el(13).sum.toDouble, el(14).sum.toDouble, el(15).sum.toDouble, el(15).sum.toDouble, el(17).sum.toDouble, el(18).sum.toDouble, el(19).sum.toDouble, el(20).sum.toDouble, el(21).sum.toDouble, el(22).sum.toDouble, el(23).sum.toDouble, el(24).sum.toDouble)
}
)

它抛出一个错误:

<console>:1: error: too many elements for tuple: 26, allowed: 22

这是 Scala 中的一个错误 (https://issues.scala-lang.org/browse/SI-9572)。所以我创建了一个案例 class 来继续解决这个问题。

case class HandleMaxTuple(col1:String, col2:String, col3: Int, col4: Int, col5: Int, col6: Double, col7: Double, col8: Double, col9: Double, col10: Double, col11: Double, col12: Double, col13: Double, col14: Double, col15: Double, col16: Double, col17: Double, col18: Double, col19: Double, col20: Double, col21: Double, col22: Double, col23: Double, col24: Double, col25:Double)

因此新的rdd定义变成:

val rdd3 = rdd.map(elements => {
val el = elements.split(",")
(HandleMaxTuple(el(0).substring(1,11).toString, el(1).toString,el(2).toInt, el(3).toInt, el(4).toInt, el(5).toDouble, el(6).toDouble, el(7).toDouble, el(8).toDouble, el(9).toDouble, el(10).toDouble, el(11).toDouble, el(12).toDouble, el(13).toDouble, el(14).toDouble, el(15).toDouble, el(15).toDouble, el(17).toDouble, el(18).toDouble, el(19).toDouble, el(20).toDouble, el(21).toDouble, el(22).toDouble, el(23).toDouble, el(24).toDouble))
}
)

但是,当我尝试读取 RDD 的内容时:

rdd.take(2).foreach(println)

它抛出一个异常 java.lang.ArrayIndexOutOfBoundsException:

错误堆栈:

Driver stacktrace:
  at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1487)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:1486)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:814)
  at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:814)
  at scala.Option.foreach(Option.scala:257)
  at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
  at org.apache.spark.util.EventLoop$$anon.run(EventLoop.scala:48)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
  at org.apache.spark.rdd.RDD$$anonfun$take.apply(RDD.scala:1354)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
  at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
  at org.apache.spark.rdd.RDD.take(RDD.scala:1327)
  ... 48 elided
Caused by: java.lang.ArrayIndexOutOfBoundsException: 1

知道为什么会这样吗?有什么解决方法吗?

我尝试使用案例 class 根据您的数据做完全相同的事情,但我发现了两个问题。先看答案:

package com.scalaspark.Whosebug
import org.apache.spark.sql.SparkSession

object Whosebug {
  def main(args: Array[String]): Unit = {
    
    def parser(lines : String): HandleMaxTuple = {
      val fileds = lines.split(",")
      val c1 = fileds(0).substring(1,10).toString()
      val c2 = fileds(1).toString()
      val c3 = fileds(2).replaceAll("\s","").toInt
      val c4 = fileds(3).replaceAll("\s","").toInt
      val c5 = fileds(4).replaceAll("\s","").toInt
      val c6 = fileds(5).replaceAll("\s","").toDouble
      val c7 = fileds(6).replaceAll("\s","").toDouble
      val c8 = fileds(7).replaceAll("\s","").toDouble
      val c9 = fileds(8).replaceAll("\s","").toDouble
      val c10 = fileds(9).replaceAll("\s","").toDouble
      val c11 = fileds(10).replaceAll("\s","").toDouble
      val c12 = fileds(11).replaceAll("\s","").toDouble
      val c13 = fileds(12).replaceAll("\s","").toDouble
      val c14 = fileds(13).replaceAll("\s","").toDouble
      val c15 = fileds(14).replaceAll("\s","").toDouble
      val c16 = fileds(15).replaceAll("\s","").toDouble
      val c17 = fileds(16).replaceAll("\s","").toDouble
      val c18 = fileds(17).replaceAll("\s","").toDouble
      val c19 = fileds(18).replaceAll("\s","").toDouble
      val c20 = fileds(19).replaceAll("\s","").toDouble
      val c21 = fileds(20).replaceAll("\s","").toDouble
      val c22 = fileds(21).replaceAll("\s","").toDouble
      val c23 = fileds(22).replaceAll("\s","").toDouble
      val c24 = fileds(23).replaceAll("\s","").toDouble
      val c25 = fileds(24).replaceAll("\s","").toDouble
   
      val handleMaxTuple : HandleMaxTuple = HandleMaxTuple(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19,c20,c21,c22,c23,c24,c25)
      return handleMaxTuple 
    }
    val spark = SparkSession
                .builder()
                .appName("number of tuples limit in RDD")
                .master("local[*]")
                .getOrCreate()
                
    val lines = spark.sparkContext.textFile("C:\Users\rajnish.kumar\Desktop\sampleData.txt", 1)
    lines.foreach(println)
    val parseddata = lines.map(parser)
    parseddata.foreach(println)
  }
  
  case class HandleMaxTuple(col1:String, col2:String, col3: Int, col4: Int, col5: Int, col6: Double, col7: Double, col8: Double, col9: Double, col10: Double, col11: Double, col12: Double, col13: Double, col14: Double, col15: Double, col16: Double, col17: Double, col18: Double, col19: Double, col20: Double, col21: Double, col22: Double, col23: Double, col24: Double, col25:Double)
}

第一个问题el(0) 你使用的 substring() 根据 Java 文档应该是:

String substring(int beginIndex, int endIndex)
Returns a new string that is a substring of this string. 

当我使用 el(0).substring(1,11) 时,我得到 java.lang.StringIndexOutOfBoundsException: String index out of range: 11

所以选择 el(0).substring(0,10)(因为索引从零开始而不是从 1)。

第二个问题您正在使用 toInt 和 doubles 进行某些字段转换,但正如我所看到的,它们都包含一个 space 开始,所以,请注意这个可以像在 Java 中一样以 NumberFormatException 失败,像这样:

scala> val i = "foo".toInt
java.lang.NumberFormatException: For input string: "foo"

有关详细信息,请访问 https://alvinalexander.com/scala/how-cast-string-to-int-in-scala-string-int-conversion。因此,为了更正它,我使用了 .replaceAll("\s",""),它删除了数字之前的所有 space,然后将它们转换为 int 和 double。

当您 运行 以上示例时,您将得到输出:

HandleMaxTuple(2017-02-26, 100052-ACC,100052,3260,1005,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)