mongodb 中大型嵌套数据的查询性能问题
Query performance issue for large nested data in mongodb
我正在尝试从一个名为 'tasks' 的大型数据集查询结果,其中包含 187297 个文档,这些文档嵌套到另一个名为 'workers' 的数据集,依次嵌套到名为 'production_units'.
的集合中
production_units -> workers -> tasks
(顺便说一句,这是 production_units 的简化版本):
[{
"_id": ObjectId("5aca27b926974863ed9f01ab"),
"name": "Z",
"workers": [{
"name": "X Y",
"worker_number": 655,
"employed": false,
"_id": ObjectId("5aca27bd26974863ed9f0425"),
"tasks": [{
"_id": ObjectId("5ac9f6c2e1a668d6d39c1fd1"),
"inbound_order_number": 3296,
"task_number": 90,
"minutes_elapsed": 120,
"date": "2004-11-30",
"start": 1101823200,
"pieces_actual": 160,
"pause_from": 1101812400,
"pause_to": 1101814200
}]
}]
}]
为了实现这一点,我使用了以下聚合命令:
db.production_units.aggregate([{
'$project': {
'workers': '$workers'
}
}, {
'$unwind': '$workers'
}, {
'$project': {
'tasks': '$workers.tasks',
'worker_number': '$workers.worker_number'
}
}, {
'$unwind': '$tasks'
}, {
'$project': {
'task_number': '$tasks.task_number',
'pieces_actual': '$tasks.pieces_actual',
'minutes_elapsed': '$tasks.minutes_elapsed',
'worker_number': 1,
'start': '$tasks.start',
'inbound_order_number': '$tasks.inbound_order_number',
'pause_from': '$tasks.pause_from',
'date': '$tasks.date',
'_id': '$tasks._id',
'pause_to': '$tasks.pause_to'
}
}, {
'$match': {
'start': {
'$exists': true
}
}
}, {
'$group': {
'entries_count': {
'$sum': 1
},
'_id': null,
'entries': {
'$push': '$$ROOT'
}
}
}, {
'$project': {
'entries_count': 1,
'_id': 0,
'entries': 1
}
}, {
'$unwind': '$entries'
}, {
'$project': {
'task_number': '$entries.task_number',
'pieces_actual': '$entries.pieces_actual',
'minutes_elapsed': '$entries.minutes_elapsed',
'worker_number': '$entries.worker_number',
'start': '$entries.start',
'inbound_order_number': '$entries.inbound_order_number',
'pause_from': '$entries.pause_from',
'date': '$entries.date',
'entries_count': 1,
'_id': '$entries._id',
'pause_to': '$entries.pause_to'
}
}, {
'$sort': {
'start': 1
}
}, {
'$skip': 187290
}, {
'$limit': 10
}], {
allowDiskUse: true
})
返回的文档是:
{ "entries_count" : 187297, "task_number" : 100, "pieces_actual" : 68, "minutes_elapsed" : 102, "worker_number" : 411, "start" : 1594118400, "inbound_order_number" : 8569, "pause_from" : 1594119600, "date" : "2020-07-07", "_id" : ObjectId("5ac9f6d3e1a668d6d3a06351"), "pause_to" : 1594119600 } { "entries_count" : 187297, "task_number" : 130, "pieces_actual" : 20, "minutes_elapsed" : 30, "worker_number" : 549, "start" : 1596531600, "inbound_order_number" : 7683, "pause_from" : 1596538800, "date" : "2020-08-04", "_id" : ObjectId("5ac9f6cde1a668d6d39f1b26"), "pause_to" : 1596538800 } { "entries_count" : 187297, "task_number" : 210, "pieces_actual" : 84, "minutes_elapsed" : 180, "worker_number" : 734, "start" : 1601276400, "inbound_order_number" : 8330, "pause_from" : 1601290800, "date" : "2020-09-28", "_id" : ObjectId("5ac9f6d0e1a668d6d39fd677"), "pause_to" : 1601290800 } { "entries_count" : 187297, "task_number" : 20, "pieces_actual" : 64, "minutes_elapsed" : 90, "worker_number" : 114, "start" : 1601800200, "inbound_order_number" : 7690, "pause_from" : 1601809200, "date" : "2020-10-04", "_id" : ObjectId("5ac9f6cee1a668d6d39f3032"), "pause_to" : 1601811900 } { "entries_count" : 187297, "task_number" : 140, "pieces_actual" : 70, "minutes_elapsed" : 84, "worker_number" : 49, "start" : 1603721640, "inbound_order_number" : 4592, "pause_from" : 1603710000, "date" : "2020-10-26", "_id" : ObjectId("5ac9f6c8e1a668d6d39df664"), "pause_to" : 1603712700 } { "entries_count" : 187297, "task_number" : 80, "pieces_actual" : 20, "minutes_elapsed" : 30, "worker_number" : 277, "start" : 1796628600, "inbound_order_number" : 4655, "pause_from" : 1796641200, "date" : "2026-12-07", "_id" : ObjectId("5ac9f6c8e1a668d6d39e1fc0"), "pause_to" : 1796643900 } { "entries_count" : 187297, "task_number" : 40, "pieces_actual" : 79, "minutes_elapsed" : 123, "worker_number" : 96, "start" : 3802247580, "inbound_order_number" : 4592, "pause_from" : 3802244400, "date" : "2090-06-27", "_id" : ObjectId("5ac9f6c8e1a668d6d39de218"), "pause_to" : 3802244400 }
但是,查询需要几秒钟才能显示结果,而不是几毫秒。这是探查器返回的结果:
db.system.profile.findOne().millis 3216
(更新)
即使是以下简化的计数查询也会在 312 毫秒内执行,而不是很少的时间:
db.production_units.aggregate([{
"$unwind": "$workers"
}, {
"$unwind": "$workers.tasks"
},
{
"$count": "entries_count"
}
])
这就是上面查询的 explain()
returns:
{
"stages" : [
{
"$cursor" : {
"query" : {
},
"fields" : {
"workers" : 1,
"_id" : 0
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "my_db.production_units",
"indexFilterSet" : false,
"parsedQuery" : {
},
"winningPlan" : {
"stage" : "COLLSCAN",
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 28,
"executionTimeMillis" : 13,
"totalKeysExamined" : 0,
"totalDocsExamined" : 28,
"executionStages" : {
"stage" : "COLLSCAN",
"nReturned" : 28,
"executionTimeMillisEstimate" : 0,
"works" : 30,
"advanced" : 28,
"needTime" : 1,
"needYield" : 0,
"saveState" : 1,
"restoreState" : 1,
"isEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 28
},
"allPlansExecution" : [ ]
}
}
},
{
"$unwind" : {
"path" : "$workers"
}
},
{
"$unwind" : {
"path" : "$workers.tasks"
}
},
{
"$group" : {
"_id" : {
"$const" : null
},
"entries_count" : {
"$sum" : {
"$const" : 1
}
}
}
},
{
"$project" : {
"_id" : false,
"entries_count" : true
}
}
],
"ok" : 1
}
我不是经验丰富的 DBA,所以我不知道我的聚合管道中到底缺少什么来解决我面临的性能问题。我也调查了这个问题并进行了研究,但没有找到任何解决方案。
我错过了什么?
如果没有查询的 explain()
,就不可能确定查询的瓶颈是什么。但是,这里有一些关于如何改进此查询的建议
在管道末端使用单个 $project
阶段
查询包含 5 个 $project
阶段,而实际上只需要一个阶段。这会增加很多开销,尤其是在应用于大量文档时。
相反,使用点符号来查询嵌套字段,例如:
{ "$unwind": "$workers.tasks" }
尽早致电$match
$match
允许删除一些文档,所以尽早添加它以在较少数量的文档上应用进一步的聚合阶段
在$project
之前调用skip
和$limit
由于查询returns只有10个文档,不需要在180000其他文档
上应用$project
阶段
正确索引用于排序的字段
这很可能是瓶颈。确保字段 workers.tasks.start
已编入索引(有关详细信息,请参阅 MongoDB ensureIndex())
不计算查询中返回的文档的 nb
而不是 $group
/$unwind
阶段计算匹配文档,运行同时进行另一个查询,仅计算匹配文档的数量
主查询现在看起来像:
db.collection.aggregate([{
"$unwind": "$workers"
}, {
"$unwind": "$workers.tasks"
}, {
"$match": {
"workers.tasks.start": {
"$ne": null
}
}
},
{
"$sort": {
"workers.tasks.start": 1
}
}, {
"$skip": 0
}, {
"$limit": 10
},
{
"$project": {
"task_number": "$workers.tasks.task_number",
"pieces_actual": "$workers.tasks.pieces_actual",
"minutes_elapsed": "$workers.tasks.minutes_elapsed",
"worker_number": "$workers.worker_number",
"start": "$workers.tasks.start",
"inbound_order_number": "$workers.tasks.inbound_order_number",
"pause_from": "$workers.tasks.pause_from",
"date": "$workers.tasks.date",
"_id": "$workers.tasks._id",
"pause_to": "$workers.tasks.pause_to"
}
}
])
你可以在这里试试:mongoplayground.net/p/yua7qspo2Jj
计数查询将是
db.collection.aggregate([{
"$unwind": "$workers"
}, {
"$unwind": "$workers.tasks"
}, {
"$match": {
"workers.tasks.start": {
"$ne": null
}
}
},
{
"$count": "entries_count"
}
])
计数查询看起来像
我正在尝试从一个名为 'tasks' 的大型数据集查询结果,其中包含 187297 个文档,这些文档嵌套到另一个名为 'workers' 的数据集,依次嵌套到名为 'production_units'.
的集合中production_units -> workers -> tasks
(顺便说一句,这是 production_units 的简化版本):
[{
"_id": ObjectId("5aca27b926974863ed9f01ab"),
"name": "Z",
"workers": [{
"name": "X Y",
"worker_number": 655,
"employed": false,
"_id": ObjectId("5aca27bd26974863ed9f0425"),
"tasks": [{
"_id": ObjectId("5ac9f6c2e1a668d6d39c1fd1"),
"inbound_order_number": 3296,
"task_number": 90,
"minutes_elapsed": 120,
"date": "2004-11-30",
"start": 1101823200,
"pieces_actual": 160,
"pause_from": 1101812400,
"pause_to": 1101814200
}]
}]
}]
为了实现这一点,我使用了以下聚合命令:
db.production_units.aggregate([{
'$project': {
'workers': '$workers'
}
}, {
'$unwind': '$workers'
}, {
'$project': {
'tasks': '$workers.tasks',
'worker_number': '$workers.worker_number'
}
}, {
'$unwind': '$tasks'
}, {
'$project': {
'task_number': '$tasks.task_number',
'pieces_actual': '$tasks.pieces_actual',
'minutes_elapsed': '$tasks.minutes_elapsed',
'worker_number': 1,
'start': '$tasks.start',
'inbound_order_number': '$tasks.inbound_order_number',
'pause_from': '$tasks.pause_from',
'date': '$tasks.date',
'_id': '$tasks._id',
'pause_to': '$tasks.pause_to'
}
}, {
'$match': {
'start': {
'$exists': true
}
}
}, {
'$group': {
'entries_count': {
'$sum': 1
},
'_id': null,
'entries': {
'$push': '$$ROOT'
}
}
}, {
'$project': {
'entries_count': 1,
'_id': 0,
'entries': 1
}
}, {
'$unwind': '$entries'
}, {
'$project': {
'task_number': '$entries.task_number',
'pieces_actual': '$entries.pieces_actual',
'minutes_elapsed': '$entries.minutes_elapsed',
'worker_number': '$entries.worker_number',
'start': '$entries.start',
'inbound_order_number': '$entries.inbound_order_number',
'pause_from': '$entries.pause_from',
'date': '$entries.date',
'entries_count': 1,
'_id': '$entries._id',
'pause_to': '$entries.pause_to'
}
}, {
'$sort': {
'start': 1
}
}, {
'$skip': 187290
}, {
'$limit': 10
}], {
allowDiskUse: true
})
返回的文档是:
{ "entries_count" : 187297, "task_number" : 100, "pieces_actual" : 68, "minutes_elapsed" : 102, "worker_number" : 411, "start" : 1594118400, "inbound_order_number" : 8569, "pause_from" : 1594119600, "date" : "2020-07-07", "_id" : ObjectId("5ac9f6d3e1a668d6d3a06351"), "pause_to" : 1594119600 } { "entries_count" : 187297, "task_number" : 130, "pieces_actual" : 20, "minutes_elapsed" : 30, "worker_number" : 549, "start" : 1596531600, "inbound_order_number" : 7683, "pause_from" : 1596538800, "date" : "2020-08-04", "_id" : ObjectId("5ac9f6cde1a668d6d39f1b26"), "pause_to" : 1596538800 } { "entries_count" : 187297, "task_number" : 210, "pieces_actual" : 84, "minutes_elapsed" : 180, "worker_number" : 734, "start" : 1601276400, "inbound_order_number" : 8330, "pause_from" : 1601290800, "date" : "2020-09-28", "_id" : ObjectId("5ac9f6d0e1a668d6d39fd677"), "pause_to" : 1601290800 } { "entries_count" : 187297, "task_number" : 20, "pieces_actual" : 64, "minutes_elapsed" : 90, "worker_number" : 114, "start" : 1601800200, "inbound_order_number" : 7690, "pause_from" : 1601809200, "date" : "2020-10-04", "_id" : ObjectId("5ac9f6cee1a668d6d39f3032"), "pause_to" : 1601811900 } { "entries_count" : 187297, "task_number" : 140, "pieces_actual" : 70, "minutes_elapsed" : 84, "worker_number" : 49, "start" : 1603721640, "inbound_order_number" : 4592, "pause_from" : 1603710000, "date" : "2020-10-26", "_id" : ObjectId("5ac9f6c8e1a668d6d39df664"), "pause_to" : 1603712700 } { "entries_count" : 187297, "task_number" : 80, "pieces_actual" : 20, "minutes_elapsed" : 30, "worker_number" : 277, "start" : 1796628600, "inbound_order_number" : 4655, "pause_from" : 1796641200, "date" : "2026-12-07", "_id" : ObjectId("5ac9f6c8e1a668d6d39e1fc0"), "pause_to" : 1796643900 } { "entries_count" : 187297, "task_number" : 40, "pieces_actual" : 79, "minutes_elapsed" : 123, "worker_number" : 96, "start" : 3802247580, "inbound_order_number" : 4592, "pause_from" : 3802244400, "date" : "2090-06-27", "_id" : ObjectId("5ac9f6c8e1a668d6d39de218"), "pause_to" : 3802244400 }
但是,查询需要几秒钟才能显示结果,而不是几毫秒。这是探查器返回的结果:
db.system.profile.findOne().millis 3216
(更新)
即使是以下简化的计数查询也会在 312 毫秒内执行,而不是很少的时间:
db.production_units.aggregate([{
"$unwind": "$workers"
}, {
"$unwind": "$workers.tasks"
},
{
"$count": "entries_count"
}
])
这就是上面查询的 explain()
returns:
{
"stages" : [
{
"$cursor" : {
"query" : {
},
"fields" : {
"workers" : 1,
"_id" : 0
},
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "my_db.production_units",
"indexFilterSet" : false,
"parsedQuery" : {
},
"winningPlan" : {
"stage" : "COLLSCAN",
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 28,
"executionTimeMillis" : 13,
"totalKeysExamined" : 0,
"totalDocsExamined" : 28,
"executionStages" : {
"stage" : "COLLSCAN",
"nReturned" : 28,
"executionTimeMillisEstimate" : 0,
"works" : 30,
"advanced" : 28,
"needTime" : 1,
"needYield" : 0,
"saveState" : 1,
"restoreState" : 1,
"isEOF" : 1,
"invalidates" : 0,
"direction" : "forward",
"docsExamined" : 28
},
"allPlansExecution" : [ ]
}
}
},
{
"$unwind" : {
"path" : "$workers"
}
},
{
"$unwind" : {
"path" : "$workers.tasks"
}
},
{
"$group" : {
"_id" : {
"$const" : null
},
"entries_count" : {
"$sum" : {
"$const" : 1
}
}
}
},
{
"$project" : {
"_id" : false,
"entries_count" : true
}
}
],
"ok" : 1
}
我不是经验丰富的 DBA,所以我不知道我的聚合管道中到底缺少什么来解决我面临的性能问题。我也调查了这个问题并进行了研究,但没有找到任何解决方案。
我错过了什么?
如果没有查询的 explain()
,就不可能确定查询的瓶颈是什么。但是,这里有一些关于如何改进此查询的建议
在管道末端使用单个 $project
阶段
查询包含 5 个 $project
阶段,而实际上只需要一个阶段。这会增加很多开销,尤其是在应用于大量文档时。
相反,使用点符号来查询嵌套字段,例如:
{ "$unwind": "$workers.tasks" }
尽早致电$match
$match
允许删除一些文档,所以尽早添加它以在较少数量的文档上应用进一步的聚合阶段
在$project
之前调用skip
和$limit
由于查询returns只有10个文档,不需要在180000其他文档
上应用$project
阶段
正确索引用于排序的字段
这很可能是瓶颈。确保字段 workers.tasks.start
已编入索引(有关详细信息,请参阅 MongoDB ensureIndex())
不计算查询中返回的文档的 nb
而不是 $group
/$unwind
阶段计算匹配文档,运行同时进行另一个查询,仅计算匹配文档的数量
主查询现在看起来像:
db.collection.aggregate([{
"$unwind": "$workers"
}, {
"$unwind": "$workers.tasks"
}, {
"$match": {
"workers.tasks.start": {
"$ne": null
}
}
},
{
"$sort": {
"workers.tasks.start": 1
}
}, {
"$skip": 0
}, {
"$limit": 10
},
{
"$project": {
"task_number": "$workers.tasks.task_number",
"pieces_actual": "$workers.tasks.pieces_actual",
"minutes_elapsed": "$workers.tasks.minutes_elapsed",
"worker_number": "$workers.worker_number",
"start": "$workers.tasks.start",
"inbound_order_number": "$workers.tasks.inbound_order_number",
"pause_from": "$workers.tasks.pause_from",
"date": "$workers.tasks.date",
"_id": "$workers.tasks._id",
"pause_to": "$workers.tasks.pause_to"
}
}
])
你可以在这里试试:mongoplayground.net/p/yua7qspo2Jj
计数查询将是
db.collection.aggregate([{
"$unwind": "$workers"
}, {
"$unwind": "$workers.tasks"
}, {
"$match": {
"workers.tasks.start": {
"$ne": null
}
}
},
{
"$count": "entries_count"
}
])
计数查询看起来像