限制和无序流的内部变化

Internal changes for limit and unordered stream

基本上这是在尝试回答另一个问题时出现的。假设这段代码:

AtomicInteger i = new AtomicInteger(0);
AtomicInteger count = new AtomicInteger(0);
IntStream.generate(() -> i.incrementAndGet())
        .parallel()
        .peek(x -> count.incrementAndGet())
        .limit(5)
        .forEach(System.out::println);

System.out.println("count = " + count);

我明白 IntStream#generate 是一个 无序的无限流 并且要完成它必须有一个短路操作 (limit在这种情况下)。我还了解到,Supplier 可以自由调用 Stream 实现在达到该限制之前感觉的次数。

运行 在 java-8 下,将始终打印 count 512(可能不总是,但在我的机器上是这样)。

对比运行这个在java-10下很少超过5。所以我的问题是内部发生了什么变化,短路发生得更好(我试图通过获取资源并尝试做一些差异来自己回答这个问题......)

变化发生在 Java 9,beta 103 和 Java 9,beta 120 (JDK‑8154387) 之间。

负责的 class 是 StreamSpliterators.UnorderedSliceSpliterator.OfInt,resp.它的超级 class StreamSpliterators.UnorderedSliceSpliterator.

老版本的class长得像

abstract static class UnorderedSliceSpliterator<T, T_SPLITR extends Spliterator<T>> {
    static final int CHUNK_SIZE = 1 << 7;

    // The spliterator to slice
    protected final T_SPLITR s;
    protected final boolean unlimited;
    private final long skipThreshold;
    private final AtomicLong permits;

    UnorderedSliceSpliterator(T_SPLITR s, long skip, long limit) {
        this.s = s;
        this.unlimited = limit < 0;
        this.skipThreshold = limit >= 0 ? limit : 0;
        this.permits = new AtomicLong(limit >= 0 ? skip + limit : skip);
    }

    UnorderedSliceSpliterator(T_SPLITR s,
                              UnorderedSliceSpliterator<T, T_SPLITR> parent) {
        this.s = s;
        this.unlimited = parent.unlimited;
        this.permits = parent.permits;
        this.skipThreshold = parent.skipThreshold;
    }

        @Override
        public void forEachRemaining(Consumer<? super T> action) {
            Objects.requireNonNull(action);

            ArrayBuffer.OfRef<T> sb = null;
            PermitStatus permitStatus;
            while ((permitStatus = permitStatus()) != PermitStatus.NO_MORE) {
                if (permitStatus == PermitStatus.MAYBE_MORE) {
                    // Optimistically traverse elements up to a threshold of CHUNK_SIZE
                    if (sb == null)
                        sb = new ArrayBuffer.OfRef<>(CHUNK_SIZE);
                    else
                        sb.reset();
                    long permitsRequested = 0;
                    do { } while (s.tryAdvance(sb) && ++permitsRequested < CHUNK_SIZE);
                    if (permitsRequested == 0)
                        return;
                    sb.forEach(action, acquirePermits(permitsRequested));
                }
                else {
                    // Must be UNLIMITED; let 'er rip
                    s.forEachRemaining(action);
                    return;
                }
            }
        }

正如我们所见,它尝试在每个拆分器中缓冲最多 CHUNK_SIZE = 1 << 7 个元素,最终可能达到“CPU 个核心数”×128 个元素。

相比之下,新版本看起来像

abstract static class UnorderedSliceSpliterator<T, T_SPLITR extends Spliterator<T>> {
    static final int CHUNK_SIZE = 1 << 7;

    // The spliterator to slice
    protected final T_SPLITR s;
    protected final boolean unlimited;
    protected final int chunkSize;
    private final long skipThreshold;
    private final AtomicLong permits;

    UnorderedSliceSpliterator(T_SPLITR s, long skip, long limit) {
        this.s = s;
        this.unlimited = limit < 0;
        this.skipThreshold = limit >= 0 ? limit : 0;
        this.chunkSize = limit >= 0 ? (int)Math.min(CHUNK_SIZE,
            ((skip + limit) / AbstractTask.LEAF_TARGET) + 1) : CHUNK_SIZE;
        this.permits = new AtomicLong(limit >= 0 ? skip + limit : skip);
    }

    UnorderedSliceSpliterator(T_SPLITR s,
                              UnorderedSliceSpliterator<T, T_SPLITR> parent) {
        this.s = s;
        this.unlimited = parent.unlimited;
        this.permits = parent.permits;
        this.skipThreshold = parent.skipThreshold;
        this.chunkSize = parent.chunkSize;
    }

        @Override
        public void forEachRemaining(Consumer<? super T> action) {
            Objects.requireNonNull(action);

            ArrayBuffer.OfRef<T> sb = null;
            PermitStatus permitStatus;
            while ((permitStatus = permitStatus()) != PermitStatus.NO_MORE) {
                if (permitStatus == PermitStatus.MAYBE_MORE) {
                    // Optimistically traverse elements up to a threshold of chunkSize
                    if (sb == null)
                        sb = new ArrayBuffer.OfRef<>(chunkSize);
                    else
                        sb.reset();
                    long permitsRequested = 0;
                    do { } while (s.tryAdvance(sb) && ++permitsRequested < chunkSize);
                    if (permitsRequested == 0)
                        return;
                    sb.forEach(action, acquirePermits(permitsRequested));
                }
                else {
                    // Must be UNLIMITED; let 'er rip
                    s.forEachRemaining(action);
                    return;
                }
            }
        }

所以现在有一个实例字段chunkSize。当存在定义的限制并且表达式 ((skip + limit) / AbstractTask.LEAF_TARGET) + 1 的计算结果小于 CHUNK_SIZE 时,将使用较小的值。因此,当限制较小时,chunkSize 会小得多。在您的限制为 5 的情况下,块大小将始终为 1.