Dask 异步处理,在结果到达时打印结果
Dask async processing, print results as they arrive
以下示例不起作用,除非 asynchronous
关键字未在 Localcluster
中使用。我想控制使用了多少 processes/workers 并并行处理函数,并在结果准备就绪时打印出来。需要更改什么?
import time
from dask.distributed import Client, LocalCluster, as_completed
def wait(sec):
time.sleep(sec)
return sec
def main():
cluster = LocalCluster(n_workers=2, ncores=2, asynchronous=True)
inputs = [5, 7, 3, 1]
client = Client(cluster)
futures = client.map(wait, inputs)
for future, result in as_completed(futures, with_results=True):
print(result)
client.close()
if __name__ == '__main__':
main()
按照您的建议,您应该从 LocalCluster 调用中删除 asynchronous=
关键字。该关键字用于支持异步函数,如下所示:
async def main():
cluster = await LocalCluster(n_workers=2, ncores=2, asynchronous=True)
inputs = [5, 7, 3, 1]
client = await Client(cluster, asynchronous=True)
futures = client.map(wait, inputs)
async for future, result in as_completed(futures, with_results=True):
print(result)
await client.close()
如果您不想使用 async-await 语法(这种情况比较少见),那么您应该忽略 asynchronous= 关键字。它可能并不像你想象的那样。
以下示例不起作用,除非 asynchronous
关键字未在 Localcluster
中使用。我想控制使用了多少 processes/workers 并并行处理函数,并在结果准备就绪时打印出来。需要更改什么?
import time
from dask.distributed import Client, LocalCluster, as_completed
def wait(sec):
time.sleep(sec)
return sec
def main():
cluster = LocalCluster(n_workers=2, ncores=2, asynchronous=True)
inputs = [5, 7, 3, 1]
client = Client(cluster)
futures = client.map(wait, inputs)
for future, result in as_completed(futures, with_results=True):
print(result)
client.close()
if __name__ == '__main__':
main()
按照您的建议,您应该从 LocalCluster 调用中删除 asynchronous=
关键字。该关键字用于支持异步函数,如下所示:
async def main():
cluster = await LocalCluster(n_workers=2, ncores=2, asynchronous=True)
inputs = [5, 7, 3, 1]
client = await Client(cluster, asynchronous=True)
futures = client.map(wait, inputs)
async for future, result in as_completed(futures, with_results=True):
print(result)
await client.close()
如果您不想使用 async-await 语法(这种情况比较少见),那么您应该忽略 asynchronous= 关键字。它可能并不像你想象的那样。