在 Spark Structured Streaming 中外部连接两个数据集(不是 DataFrames)

Outer join two Datasets (not DataFrames) in Spark Structured Streaming

我有一些代码可以连接两个流 DataFrames 并输出到控制台。

val dataFrame1 =
  df1Input.withWatermark("timestamp", "40 seconds").as("A")

val dataFrame2 =
  df2Input.withWatermark("timestamp", "40 seconds").as("B")

val finalDF: DataFrame = dataFrame1.join(dataFrame2,
      expr(
        "A.id = B.id" +
          " AND " +
          "B.timestamp >= A.timestamp " +
          " AND " +
          "B.timestamp <= A.timestamp + interval 1 hour")
      , joinType = "leftOuter")
finalDF.writeStream.format("console").start().awaitTermination()

我现在想要的是重构这部分以使用 Datasets,这样我就可以进行一些 compile-time 检查。

所以我尝试的方法非常简单:

val finalDS: Dataset[(A,B)] = dataFrame1.as[A].joinWith(dataFrame2.as[B],
      expr(
        "A.id = B.id" +
          " AND " +
          "B.timestamp >= A.timestamp " +
          " AND " +
          "B.timestamp <= A.timestamp + interval 1 hour")
      , joinType = "leftOuter")
finalDS.writeStream.format("console").start().awaitTermination()

但是,这会产生以下错误:

org.apache.spark.sql.AnalysisException: Stream-stream outer join between two streaming DataFrame/Datasets is not supported without a watermark in the join keys, or a watermark on the nullable side and an appropriate range condition;;

可以看到,join代码没有变化,所以两边都有水印,还有范围条件。唯一的变化是使用 Dataset API 而不是 DataFrame.

还有,我用inner的时候没问题join:

val finalDS: Dataset[(A,B)] = dataFrame1.as[A].joinWith(dataFrame2.as[B],
          expr(
            "A.id = B.id" +
              " AND " +
              "B.timestamp >= A.timestamp " +
              " AND " +
              "B.timestamp <= A.timestamp + interval 1 hour")
          )
    finalDS.writeStream.format("console").start().awaitTermination()

有人知道怎么会这样吗?

好吧,当您使用 joinWith 方法而不是 join 时,您依赖于不同的实现,并且此实现似乎不支持 leftOuter join 进行流式传输数据集。

您可以查看官方文档的 outer joins with watermarking 部分。未使用 join 方法 joinWith。请注意,结果类型将为 DataFrame。这意味着您很可能必须手动映射字段

val finalDS = dataFrame1.as[A].join(dataFrame2.as[B],
    expr(
      "A.key = B.key" +
        " AND " +
        "B.timestamp >= A.timestamp " +
        " AND " +
        "B.timestamp <= A.timestamp + interval 1 hour"),
    joinType = "leftOuter").select(/* useful fields */).as[C]

如果你在这里了解为什么会出现这个异常

org.apache.spark.sql.AnalysisException: Stream-stream outer join between two streaming DataFrame/Datasets is not supported without a watermark in the join keys, or a watermark on the nullable side and an appropriate range condition;;

虽然您已将水印引入连接并且 Spark 3 已经支持流连接,但您可能已经在连接后添加了水印,但 Spark 希望您在每个流的连接之前添加水印!