将事件 DataFrame 重采样为 10 分钟间隔并计算事件
Resampling Event DataFrame to 10 mints interval and counting events
我有一个 pandas 数据框,它显示了一些正在发生的事件的一些信息。基本是这样
Timestamp Event Code Prev Event Code State
2018-01-01T06:45:04.691 0 138 1
2018-01-01T06:44:33.678 138 0 21
2017-12-31T06:32:06.691 0 138 21
2017-12-31T06:31:39.687 138 0 21
2017-12-30T06:19:20.688 0 138 1
我想重新采样此数据帧,使时间戳间隔 10 分钟,并且在这 10 分钟间隔内发生的事件计数。我想要这样的输出
Timestamp 0_count 138_count
fifth 10 min 2 2
fourth 10 min 3 0
third 10 min 5 0
second 10 min 1 1
first 10 min 0 2
我刚刚给出了一个占位符时间戳,而不是 Timestamp
列中的实际输出。实际上应该有 10 个薄荷分离的时间戳。
我不知道如何解决这个问题。我认为必须有一些有效的方法可用,而不是一些复杂的循环和 Pandas
.
中的代码
为了重新生成示例数据框,可以使用此代码。
event_df = pd.DataFrame()
event_df['Timestamp'] = ['2018-01-01T06:45:04.691', '2018-01-01T06:44:33.678',
'2017-12-31T06:32:06.691', '2017-12-31T06:31:39.687',
'2017-12-30T06:19:20.688']
event_df['Event Code'] = [ 0, 138, 0, 138, 0]
event_df['Prev Event Code'] = [138, 0, 138, 0, 138]
event_df['State'] = [ 1, 21, 21, 21, 1]
将时间戳设置为数据帧索引:
event_df.index = pd.to_datetime(event_df.Timestamp)
现在,您可以重新取样:
count_138 = (event_df['Event Code']==138).astype(int)\
.resample('10 min').sum()
count_0 = (event_df['Event Code']==0).astype(int)\
.resample('10 min').sum()
并根据需要合并结果:
pd.DataFrame({'count_0': count_0, 'count_138': count_138})
我有一个 pandas 数据框,它显示了一些正在发生的事件的一些信息。基本是这样
Timestamp Event Code Prev Event Code State
2018-01-01T06:45:04.691 0 138 1
2018-01-01T06:44:33.678 138 0 21
2017-12-31T06:32:06.691 0 138 21
2017-12-31T06:31:39.687 138 0 21
2017-12-30T06:19:20.688 0 138 1
我想重新采样此数据帧,使时间戳间隔 10 分钟,并且在这 10 分钟间隔内发生的事件计数。我想要这样的输出
Timestamp 0_count 138_count
fifth 10 min 2 2
fourth 10 min 3 0
third 10 min 5 0
second 10 min 1 1
first 10 min 0 2
我刚刚给出了一个占位符时间戳,而不是 Timestamp
列中的实际输出。实际上应该有 10 个薄荷分离的时间戳。
我不知道如何解决这个问题。我认为必须有一些有效的方法可用,而不是一些复杂的循环和 Pandas
.
为了重新生成示例数据框,可以使用此代码。
event_df = pd.DataFrame()
event_df['Timestamp'] = ['2018-01-01T06:45:04.691', '2018-01-01T06:44:33.678',
'2017-12-31T06:32:06.691', '2017-12-31T06:31:39.687',
'2017-12-30T06:19:20.688']
event_df['Event Code'] = [ 0, 138, 0, 138, 0]
event_df['Prev Event Code'] = [138, 0, 138, 0, 138]
event_df['State'] = [ 1, 21, 21, 21, 1]
将时间戳设置为数据帧索引:
event_df.index = pd.to_datetime(event_df.Timestamp)
现在,您可以重新取样:
count_138 = (event_df['Event Code']==138).astype(int)\
.resample('10 min').sum()
count_0 = (event_df['Event Code']==0).astype(int)\
.resample('10 min').sum()
并根据需要合并结果:
pd.DataFrame({'count_0': count_0, 'count_138': count_138})