带有火花流的多个 writeStream

multiple writeStream with spark streaming

我正在使用 spark streaming,但在尝试实现多个 writestream 时遇到了一些问题。 下面是我的代码

DataWriter.writeStreamer(firstTableData,"parquet",CheckPointConf.firstCheckPoint,OutputConf.firstDataOutput)
DataWriter.writeStreamer(secondTableData,"parquet",CheckPointConf.secondCheckPoint,OutputConf.secondDataOutput)
DataWriter.writeStreamer(thirdTableData,"parquet", CheckPointConf.thirdCheckPoint,OutputConf.thirdDataOutput)

writeStreamer 定义如下:

def writeStreamer(input: DataFrame, checkPointFolder: String, output: String) = {

  val query = input
                .writeStream
                .format("orc")
                .option("checkpointLocation", checkPointFolder)
                .option("path", output)
                .outputMode(OutputMode.Append)
                .start()

  query.awaitTermination()
}

我面临的问题是只有第一个 table 是用 spark writeStream 编写的,所有其他 tables 没有任何反应。 你对此有什么想法吗?

By default the number of concurrent jobs is 1 which means at a time only 1 job will be active

您是否尝试在 spark conf 中增加可能的并发作业数量?

sparkConf.set("spark.streaming.concurrentJobs","3")

不是官方来源:http://why-not-learn-something.blogspot.com/2016/06/spark-streaming-performance-tuning-on.html

query.awaitTermination() 应该在 最后一个流创建之后完成。

writeStreamer 函数可以修改为 return a StreamingQuery 而不是 awaitTermination 此时(因为它是 blocking):

def writeStreamer(input: DataFrame, checkPointFolder: String, output: String): StreamingQuery = {
  input
    .writeStream
    .format("orc")
    .option("checkpointLocation", checkPointFolder)
    .option("path", output)
    .outputMode(OutputMode.Append)
    .start()
}

那么你将拥有:

val query1 = DataWriter.writeStreamer(...)
val query2 = DataWriter.writeStreamer(...)
val query3 = DataWriter.writeStreamer(...)

query3.awaitTermination()

如果你想并行执行写入 运行 的操作,你可以使用

sparkSession.streams.awaitAnyTermination()

并从 writeStreamer 方法中删除 query.awaitTermination()