最佳方式(运行-time)根据分组汇总(计算总和与总计数的比率)

Best way(run-time) to aggregate (calculate ratio of) sum to total count based on group by

我正在尝试确定已批准申请(由标志“1”标识,如果不是则为“0”)与每个人的申请总数 (Cust_ID) 的比率。我已经通过以下代码实现了这个逻辑,但是计算 160 万条记录需要大约 10 分钟。有没有更快的执行同样的操作?

# Finding ratio of approved out of total applications
df_approved_ratio = df.groupby('Cust_ID').apply(lambda x:x['STATUS_Approved'].sum()/len(x))

我认为需要汇总 mean:

df = pd.DataFrame({'STATUS_Approved':[0,1,0,0,1,1],
                   'Cust_ID':list('aaabbb')})

print (df)
   STATUS_Approved Cust_ID
0                0       a
1                1       a
2                0       a
3                0       b
4                1       b
5                1       b

df_approved_ratio = df.groupby('Cust_ID')['STATUS_Approved'].mean()
print (df_approved_ratio)
Cust_ID
a    0.333333
b    0.666667
Name: STATUS_Approved, dtype: float64

print (df.groupby('Cust_ID').apply(lambda x:x['STATUS_Approved'].sum()/len(x)))
Cust_ID
a    0.333333
b    0.666667
Name: STATUS_Approved, dtype: float64