如何打印用于预测 PySpark 中特定行样本的决策路径/规则?

How to print the decision path / rules used to predict sample of a specific row in PySpark?

如何在Spark DataFrame中打印特定样本的决策路径?

Spark Version: '2.3.1'

下面的代码打印了整个模型的决策路径,如何让它打印出特定样本的决策路径?例如tagvalue ball等于2

行的决策路径
import pyspark.sql.functions as F
from pyspark.ml import Pipeline, Transformer
from pyspark.sql import DataFrame
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import VectorAssembler

import findspark
findspark.init()

from pyspark import SparkConf
from pyspark.sql import SparkSession
import pandas as pd

import pyspark.sql.functions as F
from pyspark.ml import Pipeline, Transformer
from pyspark.sql import DataFrame
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import VectorAssembler
from pyspark.sql.functions import monotonically_increasing_id, col, row_number
from pyspark.sql.window import Window

spark = SparkSession.builder.appName('demo')\
    .master('local[*]')\
    .getOrCreate()

data = pd.DataFrame({
    'ball': [0, 1, 2, 3],
    'keep': [4, 5, 6, 7],
    'hall': [8, 9, 10, 11],
    'fall': [12, 13, 14, 15],
    'mall': [16, 17, 18, 10],
    'label': [21, 31, 41, 51]
})

df = spark.createDataFrame(data)

df = df.withColumn("mono_ID", monotonically_increasing_id())
w = Window().orderBy("mono_ID")
df = df.select(row_number().over(w).alias("tagvalue"), col("*"))

assembler = VectorAssembler(
    inputCols=['ball', 'keep', 'hall', 'fall'], outputCol='features')
dtc = DecisionTreeClassifier(featuresCol='features', labelCol='label')

pipeline = Pipeline(stages=[assembler, dtc]).fit(df)
transformed_pipeline = pipeline.transform(df)

#ml_pipeline = pipeline.stages[1]

result = transformed_pipeline.filter(transformed_pipeline.tagvalue == 2)
result.select('tagvalue', 'prediction').show()


+--------+----------+
|tagvalue|prediction|
+--------+----------+
|       2|      31.0|
+--------+----------+

上面打印了tagvalue2prediction。现在我想要算法中的决策路径导致该标签值的答案而不是整个模型。

我知道以下内容,但打印的是整个模型决策路径而不是特定模型。

ml_pipeline = pipeline.stages[1]
ml_pipeline.toDebugString

scikit学习中存在的等价物,spark中的等价物是什么?

更新 1:

如果您 运行 在 scikit learn 中使用以下代码,它将打印该特定示例的决策路径,这里是直接从网站中摘录的片段。

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)
estimator.fit(X_train, y_train)

n_nodes = estimator.tree_.node_count
children_left = estimator.tree_.children_left
children_right = estimator.tree_.children_right
feature = estimator.tree_.feature
threshold = estimator.tree_.threshold

# First let's retrieve the decision path of each sample. The decision_path
# method allows to retrieve the node indicator functions. A non zero element of
# indicator matrix at the position (i, j) indicates that the sample i goes
# through the node j.

node_indicator = estimator.decision_path(X_test)

# Similarly, we can also have the leaves ids reached by each sample.

leave_id = estimator.apply(X_test)

# Now, it's possible to get the tests that were used to predict a sample or
# a group of samples. First, let's make it for the sample.

sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
                                    node_indicator.indptr[sample_id + 1]]

print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:
    if leave_id[sample_id] != node_id:
        continue

    if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
        threshold_sign = "<="
    else:
        threshold_sign = ">"

    print("decision id node %s : (X_test[%s, %s] (= %s) %s %s)" %
          (node_id, 
           sample_id, 
           feature[node_id],
           X_test[sample_id, feature[node_id]], 
           threshold_sign,
           threshold[node_id]))

输出会像这样

Rules used to predict sample 0: decision id node 4 : (X_test[0, -2] (= 5.1) > -2.0)

我稍微更改了您的数据框,以确保我们可以在解释中看到不同的功能
我将 Assembler 更改为使用 feature_list,因此我们稍后可以轻松访问它
更改如下:

#change1: ball goes from [0,1,2,3] ->[0,1,1,3] so we can see other features in explanations
#change2: added in multiple paths to the same prediction
#change3: added in a categorical variable
#change3: feature_list so we can re-use those indicies easily later
data = pd.DataFrame({
    'ball': [0, 1, 1, 3, 1, 0, 1, 3],
    'keep': [4, 5, 6, 7, 7, 4, 6, 7],
    'hall': [8, 9, 10, 11, 2, 6, 10, 11],
    'fall': [12, 13, 14, 15, 15, 12, 14, 15],
    'mall': [16, 17, 18, 10, 10, 16, 18, 10],
    'wall': ['a','a','a','a','a','a','c','e'],
    'label': [21, 31, 41, 51, 51, 51, 21, 31]
})

df = spark.createDataFrame(data)

df = df.withColumn("mono_ID", monotonically_increasing_id())
w = Window().orderBy("mono_ID")
df = df.select(row_number().over(w).alias("tagvalue"), col("*"))

indexer = StringIndexer(inputCol='wall', outputCol='wallIndex')
encoder = OneHotEncoder(inputCol='wallIndex', outputCol='wallVec')

#i added this line so feature replacement later is easy because of the indices
features = ['ball','keep','wallVec','hall','fall']
assembler = VectorAssembler(
    inputCols=features, outputCol='features')
dtc = DecisionTreeClassifier(featuresCol='features', labelCol='label')

pipeline = Pipeline(stages=[indexer, encoder, assembler, dtc]).fit(df)
transformed_pipeline = pipeline.transform(df)

下面是我发现能够使用决策树本身的方法:

#get the pipeline back out, as you've done earlier, this changed to [3] because of the categorical encoders
ml_pipeline = pipeline.stages[3]

#saves the model so we can get at the internals that the scala code keeps private
ml_pipeline.save("mymodel_test")

#read back in the model parameters
modeldf = spark.read.parquet("mymodel_test/data/*")

import networkx as nx


#select only the columns that we NEED and collect into a list
noderows = modeldf.select("id","prediction","leftChild","rightChild","split").collect()


#create a graph for the decision tree; you Could use a simpler tree structure here if you wanted instead of a 'graph'
G = nx.Graph()

#first pass to add the nodes
for rw in noderows:
    if rw['leftChild'] < 0 and rw['rightChild'] < 0:
        G.add_node(rw['id'], cat="Prediction", predval=rw['prediction'])
    else: 
        G.add_node(rw['id'], cat="splitter", featureIndex=rw['split']['featureIndex'], thresh=rw['split']['leftCategoriesOrThreshold'], leftChild=rw['leftChild'], rightChild=rw['rightChild'], numCat=rw['split']['numCategories'])

#second pass to add the relationships, now with additional information
for rw in modeldf.where("leftChild > 0 and rightChild > 0").collect():
    tempnode = G.nodes()[rw['id']]
    G.add_edge(rw['id'], rw['leftChild'], reason="{0} less than {1}".format(features[tempnode['featureIndex']],tempnode['thresh']))
    G.add_edge(rw['id'], rw['rightChild'], reason="{0} greater than {1}".format(features[tempnode['featureIndex']],tempnode['thresh']))

现在让我们构建一个函数来处理所有这些东西
注意:这可以写得更干净

#function to parse the path based on the tagvalue and it's corresponding features
def decision_path(tag2search):
    wanted_row = transformed_pipeline.where("tagvalue = "+str(tag2search)).collect()[0]
    wanted_features = wanted_row['features']
    start_node = G.nodes()[0]
    while start_node['cat'] != 'Prediction':
        #do stuff with categorical variables
        if start_node['numCat'] > 0:
            feature_value = wanted_features[start_node['featureIndex']:start_node['featureIndex'] + start_node['numCat']]
            #this assumes that you'll name all your cat variables with the following syntax 'ball' -> 'ballVec' or 'wall' -> 'wallVec'
            feature_column = features[start_node['featureIndex']]
            original_column = feature_column[:-3]
            valToCheck = [x[original_column] for x in transformed_pipeline.select(feature_column, original_column).distinct().collect() if np.all(x[feature_column].toArray()==feature_value)][0]

            if (valToCheck == wanted_row[original_column]) :
                print("'{0}' value of {1} in [{2}]; ".format(original_column, wanted_row[original_column], valToCheck))
                start_node = G.nodes()[start_node['leftChild']]
            else:
                print("'{0}' value of {1} in [{2}]; ".format(original_column, wanted_row[original_column], valToCheck))
                start_node = G.nodes()[start_node['rightChild']]

        #path to do stuff with non-categorical variables
        else:
            feature_value = wanted_features[start_node['featureIndex']]
            if feature_value > start_node['thresh'][0]:
                print("'{0}' value of {1} was greater than {2}; ".format(features[start_node['featureIndex']], feature_value, start_node['thresh'][0]))
                start_node = G.nodes()[start_node['rightChild']]
            else:
                print("'{0}' value of {1} was less than or equal to {2}; ".format(features[start_node['featureIndex']], feature_value, start_node['thresh'][0]))
                start_node = G.nodes()[start_node['leftChild']]

    print("leads to prediction of {0}".format(start_node['predval']))

结果采用以下形式:

[decision_path(X) for X in range(1,8)]
    'fall' value of 8.0 was greater than 6.0; 
    'ball' value of 0.0 was less than or equal to 1.0; 
    'ball' value of 0.0 was less than or equal to 0.0; 
        leads to prediction of 21.0

    'fall' value of 9.0 was greater than 6.0; 
    'ball' value of 1.0 was less than or equal to 1.0; 
    'ball' value of 1.0 was greater than 0.0; 
    'keep' value of 5.0 was less than or equal to 5.0; 
        leads to prediction of 31.0

    'fall' value of 10.0 was greater than 6.0; 
    'ball' value of 1.0 was less than or equal to 1.0; 
    'ball' value of 1.0 was greater than 0.0; 
    'keep' value of 6.0 was greater than 5.0; 
    'wall' value of a in [a]; 
        leads to prediction of 21.0

    'fall' value of 11.0 was greater than 6.0; 
    'ball' value of 3.0 was greater than 1.0; 
    'wall' value of a in [a]; 
        leads to prediction of 31.0

    'fall' value of 2.0 was less than or equal to 6.0; 
        leads to prediction of 51.0

    'fall' value of 6.0 was less than or equal to 6.0; 
        leads to prediction of 51.0

    'fall' value of 10.0 was greater than 6.0; 
    'ball' value of 1.0 was less than or equal to 1.0; 
    'ball' value of 1.0 was greater than 0.0; 
    'keep' value of 6.0 was greater than 5.0; 
    'wall' value of c in [c]; 
        leads to prediction of 21.0

备注:

  • 如果您想完全留在 Spark 世界中,您可以使用 GraphFrames 而不是 networkx(我没有那么奢侈:( )
  • 您可以随意修改措辞
  • 如果您需要杂质、impurityStats 或增益,这些都在保存的模型信息数据框中
  • 我选择使用树而不是解析 .toDebugString 因为访问树听起来更重要(并且可扩展)
    • 关于这一点,只看 .toDebugString 和 sklearn.decision_path 输出,我觉得这些更容易 understandable/readable
  • 如果您想可视化树,请查看:https://github.com/tristaneljed/Decision-Tree-Visualization-Spark/blob/master/DT.py
  • 我曾在某个时候找到了纯 Scala 实现,但现在找不到了:(
  • 我觉得我缺少一个带有 "Not In" 分类的测试用例,如果有人想输入该行的样子,我可以在必要时进行编辑

使用pyspark中决策树的todebugString属性的更高效和可解释的解决方案如下: 注意:如果您想了解以下代码的详细信息,请检查 https://medium.com/@dipaweshpawar/decoding-decision-tree-in-pyspark-bdd98dcd1ddf

from pyspark.sql.functions import to_date,datediff,lit,udf,sum,avg,col,count,lag
from pyspark.sql.types import StringType,LongType,StructType,StructField,DateType,IntegerType,DoubleType
from datetime import datetime
from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml import Pipeline
import pandas as pd
from pyspark.sql import DataFrame
from pyspark.sql.functions import udf, lit, avg, max, min
from pyspark.sql.types import StringType, ArrayType, DoubleType
from pyspark.ml.feature import StringIndexer, VectorAssembler, StandardScaler
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.sql import SparkSession
from pyspark.ml import Pipeline
import operator

import ast

operators = {
            ">=": operator.ge,
            "<=": operator.le,
            ">": operator.gt,
            "<": operator.lt,
            "==": operator.eq,
            'and': operator.and_,
            'or': operator.or_
        }

data = pd.DataFrame({
    'ball': [0, 1, 1, 3, 1, 0, 1, 3],
    'keep': [4, 5, 6, 7, 7, 4, 6, 7],
    'hall': [8, 9, 10, 11, 2, 6, 10, 11],
    'fall': [12, 13, 14, 15, 15, 12, 14, 15],
    'mall': [16, 17, 18, 10, 10, 16, 18, 10],
    'label': [21, 31, 41, 51, 51, 51, 21, 31]
})
df = spark.createDataFrame(data)

f_list = ['ball','keep','mall','hall','fall']
 assemble_numerical_features = VectorAssembler(inputCols=f_list, outputCol='features',
                                                      handleInvalid='skip')

dt = DecisionTreeClassifier(featuresCol='features', labelCol='label')

pipeline = Pipeline(stages=[assemble_numerical_features, dt])
model = pipeline.fit(df)
df = model.transform(df)
dt_m = model.stages[-1]

# Step 1: convert model.debugString output to dictionary of nodes and children
def parse_debug_string_lines(lines):
    
    block = []
    while lines:

        if lines[0].startswith('If'):
            bl = ' '.join(lines.pop(0).split()[1:]).replace('(', '').replace(')', '')
            block.append({'name': bl, 'children': parse_debug_string_lines(lines)})

            if lines[0].startswith('Else'):
                be = ' '.join(lines.pop(0).split()[1:]).replace('(', '').replace(')', '')
                block.append({'name': be, 'children': parse_debug_string_lines(lines)})
        elif not lines[0].startswith(('If', 'Else')):
            block2 = lines.pop(0)
            block.append({'name': block2})
        else:
            break
    
    return block

def debug_str_to_json(debug_string):
    data = []
    for line in debug_string.splitlines():
        if line.strip():
            line = line.strip()
            data.append(line)
        else:
            break
        if not line: break
    json = {'name': 'Root', 'children': parse_debug_string_lines(data[1:])}
    return json

# Step 2 : Using metadata stored in features column, build dictionary which maps each feature in features column of df to its index in feature vector
f_type_to_flist_dict = df.schema['features'].metadata["ml_attr"]["attrs"]
f_index_to_name_dict = {}
for f_type, f_list in f_type_to_flist_dict.items():

    for f in f_list:
        f_index = f['idx']
        f_name = f['name']
        f_index_to_name_dict[f_index] = f_name


def generate_explanations(dt_as_json, df:DataFrame, f_index_to_name_dict, operators):

    dt_as_json_str = str(dt_as_json)
    cond_parsing_exception_occured = False

    df = df.withColumn('features'+'_list',
                            udf(lambda x: x.toArray().tolist(), ArrayType(DoubleType()))
                            (df['features'])
                        )
    # step 3 : parse and check whether current instance follows condition in perticular node
    def parse_validate_cond(cond: str, f_vector: list):

        cond_parts = cond.split()
        condition_f_index = int(cond_parts[1])
        condition_op = cond_parts[2]
        condition_value = float(cond_parts[3])

        f_value = f_vector[condition_f_index]
        f_name = f_index_to_name_dict[condition_f_index].replace('numerical_features_', '').replace('encoded_numeric_', '').lower()

        if operators[condition_op](f_value, condition_value):
            return True, f_name + ' ' + condition_op + ' ' + str(round(condition_value,2))

        return False, ''
        
# Step 4 : extract rules for an instance in a dataframe, going through nodes in a tree where instance is satisfying the rule, finally leading to a prediction node
    def extract_rule(dt_as_json_str: str, f_vector: list, rule=""):
        
        # variable declared in outer function is read only
        # in inner if not explicitly declared to be nonlocal
        nonlocal cond_parsing_exception_occured

        dt_as_json = ast.literal_eval(dt_as_json_str)
        child_l = dt_as_json['children']

        for child in child_l:
            name = child['name'].strip()

            if name.startswith('Predict:'):
                # remove last comma
                return rule[0:rule.rindex(',')]

            if name.startswith('feature'):
                try:
                    res, cond = parse_validate_cond(child['name'], f_vector)
                except Exception as e:
                    res = False
                    cond_parsing_exception_occured = True
                if res:
                    rule += cond +', '
                    rule = extract_rule(str(child), f_vector, rule=rule)
        return rule

    df = df.withColumn('explanation',
                        udf(lambda dt, fv:extract_rule(dt, fv) ,StringType())
                        (lit(dt_as_json_str), df['features'+'_list'])
                    )
    # log exception occured while trying to parse
    # condition in decision tree node
    if cond_parsing_exception_occured:
        print('some node in decision tree has unexpected format')

    return df

df = generate_explanations(debug_str_to_json(dt_m.toDebugString), df, f_index_to_name_dict, operators)
rows = df.select(['ball','keep','mall','hall','fall','explanation','prediction']).collect()

output :
-----------------------
[Row(ball=0, keep=4, mall=16, hall=8, fall=12, explanation='hall > 7.0, mall > 13.0, ball <= 0.5', prediction=21.0),
 Row(ball=1, keep=5, mall=17, hall=9, fall=13, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep <= 5.5', prediction=31.0),
 Row(ball=1, keep=6, mall=18, hall=10, fall=14, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep > 5.5', prediction=21.0),
 Row(ball=3, keep=7, mall=10, hall=11, fall=15, explanation='hall > 7.0, mall <= 13.0', prediction=31.0),
 Row(ball=1, keep=7, mall=10, hall=2, fall=15, explanation='hall <= 7.0', prediction=51.0),
 Row(ball=0, keep=4, mall=16, hall=6, fall=12, explanation='hall <= 7.0', prediction=51.0),
 Row(ball=1, keep=6, mall=18, hall=10, fall=14, explanation='hall > 7.0, mall > 13.0, ball > 0.5, keep > 5.5', prediction=21.0),
 Row(ball=3, keep=7, mall=10, hall=11, fall=15, explanation='hall > 7.0, mall <= 13.0', prediction=31.0)]

output of dt_m.toDebugString:
-----------------------------------
'DecisionTreeClassificationModel (uid=DecisionTreeClassifier_2a17ae7633b9) of depth 4 with 9 nodes\n  If (feature 3 <= 7.0)\n   Predict: 51.0\n  Else (feature 3 > 7.0)\n   If (feature 2 <= 13.0)\n    Predict: 31.0\n   Else (feature 2 > 13.0)\n    If (feature 0 <= 0.5)\n     Predict: 21.0\n    Else (feature 0 > 0.5)\n     If (feature 1 <= 5.5)\n      Predict: 31.0\n     Else (feature 1 > 5.5)\n      Predict: 21.0\n'

output of debug_str_to_json(dt_m.toDebugString):
------------------------------------
{'name': 'Root',
'children': [{'name': 'feature 3 <= 7.0',
   'children': [{'name': 'Predict: 51.0'}]},
  {'name': 'feature 3 > 7.0',
   'children': [{'name': 'feature 2 <= 13.0',
     'children': [{'name': 'Predict: 31.0'}]},
    {'name': 'feature 2 > 13.0',
     'children': [{'name': 'feature 0 <= 0.5',
       'children': [{'name': 'Predict: 21.0'}]},
      {'name': 'feature 0 > 0.5',
       'children': [{'name': 'feature 1 <= 5.5',
         'children': [{'name': 'Predict: 31.0'}]},
        {'name': 'feature 1 > 5.5',
         'children': [{'name': 'Predict: 21.0'}]}]}]}]}]}