时间序列数据的迭代,使用 purrr
Iteration for time series data, using purrr
我有一堆时间序列数据在一个数据框中相互堆叠;一个国家的每个地区都有一个系列。我想将 seas()
函数(来自 seasonal
包)迭代地应用于每个系列,以使系列按季节调整。为此,我首先必须将系列转换为 ts
class。我正在努力使用 purrr
.
来完成这一切
这是一个最简单的例子:
library(seasonal)
library(tidyverse)
set.seed(1234)
df <- data.frame(region = rep(1:10, each = 20),
quarter = rep(1:20, 10),
var = sample(5:200, 200, replace = T))
对于每个区域(由数字索引),我想执行以下操作。这里以第一个区域为例:
tem1 <- df %>% filter(region==1)
tem2 <- ts(data = tem1$var, frequency = 4, start=c(1990,1))
tem3 <- seas(tem2)
tem4 <- as.data.frame(tem3$data)
然后我想堆叠输出(即多个 tem4 数据帧,每个区域一个),以及区域和季度标识符。
因此,区域 1 的输出开始是这样的:
final seasonaladj trend irregular region quarter
1 27 27 96.95 -67.97279 1 1
2 126 126 96.95 27.87381 1 2
3 124 124 96.95 27.10823 1 3
4 127 127 96.95 30.55075 1 4
5 173 173 96.95 75.01355 1 5
6 130 130 96.95 32.10672 1 6
区域 2 的数据将低于此等等
我从以下开始,但到目前为止运气不好。基本上,我正在努力将时间序列纳入小标题:
seas.adjusted <- df %>%
group_by(region) %>%
mutate(data.ts = map(.x = data$var,
.f = as.ts,
start = 1990,
freq = 4))
我对季节性调整部分了解不多,所以我可能遗漏了一些东西,但我可以帮助您将计算转移到 map
友好的函数中。
按地区分组后,您可以嵌套数据,这样每个地区都有一个嵌套数据框。然后你可以 运行 本质上与之前相同的代码,但是在 map
中的一个函数中。取消嵌套结果列会给你一个长形的调整数据框。
就像我说的,我没有专业知识知道最后两列是否有 NA
s 是预期的。
Edit:根据@wibeasley 关于保留 quarter
列的问题,我添加了一个 mutate
,它添加了所列宿舍的一列在嵌套数据框中。
library(seasonal)
library(tidyverse)
set.seed(1234)
df <- data.frame(region = rep(1:10, each = 20),
quarter = rep(1:20, 10),
var = sample(5:200, 200, replace = T))
df %>%
group_by(region) %>%
nest() %>%
mutate(data.ts = map(data, function(x) {
tem2 <- ts(x$var, frequency = 4, start = c(1990, 1))
tem3 <- seas(tem2)
as.data.frame(tem3$data) %>%
mutate(quarter = x$quarter)
})) %>%
unnest(data.ts)
#> # A tibble: 200 x 8
#> region final seasonaladj trend irregular quarter seasonal adjustfac
#> <int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 1 27 27 97.0 -68.0 1 NA NA
#> 2 1 126 126 97.0 27.9 2 NA NA
#> 3 1 124 124 97.0 27.1 3 NA NA
#> 4 1 127 127 97.0 30.6 4 NA NA
#> 5 1 173 173 97.0 75.0 5 NA NA
#> 6 1 130 130 97.0 32.1 6 NA NA
#> 7 1 6 6 97.0 -89.0 7 NA NA
#> 8 1 50 50 97.0 -46.5 8 NA NA
#> 9 1 135 135 97.0 36.7 9 NA NA
#> 10 1 105 105 97.0 8.81 10 NA NA
#> # ... with 190 more rows
我也多考虑了不嵌套的做法,而是尝试用 split
来做。将该数据框列表传递给 imap_dfr
让我获取数据框的每个拆分部分及其名称(在本例中为 region
的值),然后 return 一切 rbind
一起回到一个数据框中。有时我会回避嵌套数据只是因为我无法看到正在发生的事情,所以这是一个可能更透明的替代方案。
df %>%
split(.$region) %>%
imap_dfr(function(x, reg) {
tem2 <- ts(x$var, frequency = 4, start = c(1990, 1))
tem3 <- seas(tem2)
as.data.frame(tem3$data) %>%
mutate(region = reg, quarter = x$quarter)
}) %>%
select(region, quarter, everything()) %>%
head()
#> region quarter final seasonaladj trend irregular seasonal adjustfac
#> 1 1 1 27 27 96.95 -67.97274 NA NA
#> 2 1 2 126 126 96.95 27.87378 NA NA
#> 3 1 3 124 124 96.95 27.10823 NA NA
#> 4 1 4 127 127 96.95 30.55077 NA NA
#> 5 1 5 173 173 96.95 75.01353 NA NA
#> 6 1 6 130 130 96.95 32.10669 NA NA
由 reprex package (v0.2.0) 创建于 2018-08-12。
我把所有的动作都放在了f()
里面,然后用purrr::map_df()
调用了。 quarter
的重新收录是一个 hack。
f <- function( .region ) {
d <- df %>%
dplyr::filter(region == .region)
y <- d %>%
dplyr::pull(var) %>%
ts(frequency = 4, start=c(1990,1)) %>%
seas()
y$data %>%
as.data.frame() %>%
# dplyr::select(-seasonal, -adjustfac) %>%
dplyr::mutate(
quarter = d$quarter
)
}
purrr::map_df(1:10, f, .id = "region")
结果:
region final seasonaladj trend irregular quarter seasonal adjustfac
1 1 27.00000 27.00000 96.95000 -6.797279e+01 1 NA NA
2 1 126.00000 126.00000 96.95000 2.787381e+01 2 NA NA
3 1 124.00000 124.00000 96.95000 2.710823e+01 3 NA NA
4 1 127.00000 127.00000 96.95000 3.055075e+01 4 NA NA
5 1 173.00000 173.00000 96.95000 7.501355e+01 5 NA NA
6 1 130.00000 130.00000 96.95000 3.210672e+01 6 NA NA
7 1 6.00000 6.00000 96.95000 -8.899356e+01 7 NA NA
8 1 50.00000 50.00000 96.95000 -4.647254e+01 8 NA NA
9 1 135.00000 135.00000 96.95000 3.671077e+01 9 NA NA
10 1 105.00000 105.00000 96.95000 8.806955e+00 10 NA NA
...
96 5 55.01724 55.01724 60.25848 9.130207e-01 16 1.9084928 1.9084928
97 5 60.21549 60.21549 59.43828 1.013076e+00 17 1.0462424 1.0462424
98 5 58.30626 58.30626 58.87065 9.904130e-01 18 0.1715082 0.1715082
99 5 61.68175 61.68175 58.07827 1.062045e+00 19 1.0537962 1.0537962
100 5 59.30138 59.30138 56.70798 1.045733e+00 20 2.5294523 2.5294523
...
我有一堆时间序列数据在一个数据框中相互堆叠;一个国家的每个地区都有一个系列。我想将 seas()
函数(来自 seasonal
包)迭代地应用于每个系列,以使系列按季节调整。为此,我首先必须将系列转换为 ts
class。我正在努力使用 purrr
.
这是一个最简单的例子:
library(seasonal)
library(tidyverse)
set.seed(1234)
df <- data.frame(region = rep(1:10, each = 20),
quarter = rep(1:20, 10),
var = sample(5:200, 200, replace = T))
对于每个区域(由数字索引),我想执行以下操作。这里以第一个区域为例:
tem1 <- df %>% filter(region==1)
tem2 <- ts(data = tem1$var, frequency = 4, start=c(1990,1))
tem3 <- seas(tem2)
tem4 <- as.data.frame(tem3$data)
然后我想堆叠输出(即多个 tem4 数据帧,每个区域一个),以及区域和季度标识符。
因此,区域 1 的输出开始是这样的:
final seasonaladj trend irregular region quarter
1 27 27 96.95 -67.97279 1 1
2 126 126 96.95 27.87381 1 2
3 124 124 96.95 27.10823 1 3
4 127 127 96.95 30.55075 1 4
5 173 173 96.95 75.01355 1 5
6 130 130 96.95 32.10672 1 6
区域 2 的数据将低于此等等
我从以下开始,但到目前为止运气不好。基本上,我正在努力将时间序列纳入小标题:
seas.adjusted <- df %>%
group_by(region) %>%
mutate(data.ts = map(.x = data$var,
.f = as.ts,
start = 1990,
freq = 4))
我对季节性调整部分了解不多,所以我可能遗漏了一些东西,但我可以帮助您将计算转移到 map
友好的函数中。
按地区分组后,您可以嵌套数据,这样每个地区都有一个嵌套数据框。然后你可以 运行 本质上与之前相同的代码,但是在 map
中的一个函数中。取消嵌套结果列会给你一个长形的调整数据框。
就像我说的,我没有专业知识知道最后两列是否有 NA
s 是预期的。
Edit:根据@wibeasley 关于保留 quarter
列的问题,我添加了一个 mutate
,它添加了所列宿舍的一列在嵌套数据框中。
library(seasonal)
library(tidyverse)
set.seed(1234)
df <- data.frame(region = rep(1:10, each = 20),
quarter = rep(1:20, 10),
var = sample(5:200, 200, replace = T))
df %>%
group_by(region) %>%
nest() %>%
mutate(data.ts = map(data, function(x) {
tem2 <- ts(x$var, frequency = 4, start = c(1990, 1))
tem3 <- seas(tem2)
as.data.frame(tem3$data) %>%
mutate(quarter = x$quarter)
})) %>%
unnest(data.ts)
#> # A tibble: 200 x 8
#> region final seasonaladj trend irregular quarter seasonal adjustfac
#> <int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>
#> 1 1 27 27 97.0 -68.0 1 NA NA
#> 2 1 126 126 97.0 27.9 2 NA NA
#> 3 1 124 124 97.0 27.1 3 NA NA
#> 4 1 127 127 97.0 30.6 4 NA NA
#> 5 1 173 173 97.0 75.0 5 NA NA
#> 6 1 130 130 97.0 32.1 6 NA NA
#> 7 1 6 6 97.0 -89.0 7 NA NA
#> 8 1 50 50 97.0 -46.5 8 NA NA
#> 9 1 135 135 97.0 36.7 9 NA NA
#> 10 1 105 105 97.0 8.81 10 NA NA
#> # ... with 190 more rows
我也多考虑了不嵌套的做法,而是尝试用 split
来做。将该数据框列表传递给 imap_dfr
让我获取数据框的每个拆分部分及其名称(在本例中为 region
的值),然后 return 一切 rbind
一起回到一个数据框中。有时我会回避嵌套数据只是因为我无法看到正在发生的事情,所以这是一个可能更透明的替代方案。
df %>%
split(.$region) %>%
imap_dfr(function(x, reg) {
tem2 <- ts(x$var, frequency = 4, start = c(1990, 1))
tem3 <- seas(tem2)
as.data.frame(tem3$data) %>%
mutate(region = reg, quarter = x$quarter)
}) %>%
select(region, quarter, everything()) %>%
head()
#> region quarter final seasonaladj trend irregular seasonal adjustfac
#> 1 1 1 27 27 96.95 -67.97274 NA NA
#> 2 1 2 126 126 96.95 27.87378 NA NA
#> 3 1 3 124 124 96.95 27.10823 NA NA
#> 4 1 4 127 127 96.95 30.55077 NA NA
#> 5 1 5 173 173 96.95 75.01353 NA NA
#> 6 1 6 130 130 96.95 32.10669 NA NA
由 reprex package (v0.2.0) 创建于 2018-08-12。
我把所有的动作都放在了f()
里面,然后用purrr::map_df()
调用了。 quarter
的重新收录是一个 hack。
f <- function( .region ) {
d <- df %>%
dplyr::filter(region == .region)
y <- d %>%
dplyr::pull(var) %>%
ts(frequency = 4, start=c(1990,1)) %>%
seas()
y$data %>%
as.data.frame() %>%
# dplyr::select(-seasonal, -adjustfac) %>%
dplyr::mutate(
quarter = d$quarter
)
}
purrr::map_df(1:10, f, .id = "region")
结果:
region final seasonaladj trend irregular quarter seasonal adjustfac
1 1 27.00000 27.00000 96.95000 -6.797279e+01 1 NA NA
2 1 126.00000 126.00000 96.95000 2.787381e+01 2 NA NA
3 1 124.00000 124.00000 96.95000 2.710823e+01 3 NA NA
4 1 127.00000 127.00000 96.95000 3.055075e+01 4 NA NA
5 1 173.00000 173.00000 96.95000 7.501355e+01 5 NA NA
6 1 130.00000 130.00000 96.95000 3.210672e+01 6 NA NA
7 1 6.00000 6.00000 96.95000 -8.899356e+01 7 NA NA
8 1 50.00000 50.00000 96.95000 -4.647254e+01 8 NA NA
9 1 135.00000 135.00000 96.95000 3.671077e+01 9 NA NA
10 1 105.00000 105.00000 96.95000 8.806955e+00 10 NA NA
...
96 5 55.01724 55.01724 60.25848 9.130207e-01 16 1.9084928 1.9084928
97 5 60.21549 60.21549 59.43828 1.013076e+00 17 1.0462424 1.0462424
98 5 58.30626 58.30626 58.87065 9.904130e-01 18 0.1715082 0.1715082
99 5 61.68175 61.68175 58.07827 1.062045e+00 19 1.0537962 1.0537962
100 5 59.30138 59.30138 56.70798 1.045733e+00 20 2.5294523 2.5294523
...