sklearn.cross_validation.StratifiedShuffleSplit - error: "indices are out-of-bounds"

sklearn.cross_validation.StratifiedShuffleSplit - error: "indices are out-of-bounds"

我试图使用 Scikit-learn 的分层随机拆分拆分示例数据集。我遵循了 Scikit-learn 文档中显示的示例 here

import pandas as pd
import numpy as np
# UCI's wine dataset
wine = pd.read_csv("https://s3.amazonaws.com/demo-datasets/wine.csv")

# separate target variable from dataset
target = wine['quality']
data = wine.drop('quality',axis = 1)

# Stratified Split of train and test data
from sklearn.cross_validation import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(target, n_iter=3, test_size=0.2)

for train_index, test_index in sss:
    xtrain, xtest = data[train_index], data[test_index]
    ytrain, ytest = target[train_index], target[test_index]

# Check target series for distribution of classes
ytrain.value_counts()
ytest.value_counts()

但是,在 运行 这个脚本上,我收到以下错误:

IndexError: indices are out-of-bounds

有人可以指出我在这里做错了什么吗?谢谢!

您 运行 进入 Pandas DataFrame 索引与 NumPy ndarray 索引的不同约定。数组 train_indextest_index 是行索引的集合。但是 data 是一个 Pandas DataFrame 对象,当您对该对象使用单个索引时,如 data[train_index],Pandas 期望 train_index 以包含 标签而不是行索引。您可以使用 .values:

将数据帧转换为 NumPy 数组
data_array = data.values
for train_index, test_index in sss:
    xtrain, xtest = data_array[train_index], data_array[test_index]
    ytrain, ytest = target[train_index], target[test_index]

或使用 Pandas .iloc 访问器:

for train_index, test_index in sss:
    xtrain, xtest = data.iloc[train_index], data.iloc[test_index]
    ytrain, ytest = target[train_index], target[test_index]

我倾向于第二种方法,因为它给出 xtrainxtest 类型 DataFrame 而不是 ndarray,因此保留了列标签。