如何向量化这个函数
how to vectorize this function
以下代码有效,但我想通过矢量化创建 Z。如何实现?
import numpy as np
from numpy import sqrt
from math import fsum
points = np.array([[0,0],\
[5,-1],\
[4,6],\
[1,3]])
d = lambda x: fsum([sqrt((x[0]-z[0])**2 + (x[1]-z[1])**2) for z in points])
x = np.linspace(min(points[:,0]),max(points[:,0]),100)
y = np.linspace(min(points[:,1]),max(points[:,1]),100)
X, Y = np.meshgrid(x,y)
Z = np.zeros(np.shape(X))
for (i,j),_ in np.ndenumerate(Z):
Z[i,j] = d([X[i,j],Y[i,j]])
#Z=d([X,Y]) #this fails
我们可以利用 broadcasting
直接与 1D
版本一起工作,从而提高内存效率,并给我们自己一个向量化的单行代码,就像这样 -
Z = np.sqrt((x[:,None] - points[:,0])**2 + (y[:,None,None] - points[:,1])**2).sum(2)
发布示例数据的时间 -
In [80]: %%timeit
...: X, Y = np.meshgrid(x,y)
...: Z = np.zeros(np.shape(X))
...: for (i,j),_ in np.ndenumerate(Z):
...: Z[i,j] = d([X[i,j],Y[i,j]])
10 loops, best of 3: 101 ms per loop
In [81]: %timeit ((x[:,None] - points[:,0])**2 + (y[:,None,None] - points[:,1])**2).sum(2)
1000 loops, best of 3: 246 µs per loop
400x
加速那里!
以下代码有效,但我想通过矢量化创建 Z。如何实现?
import numpy as np
from numpy import sqrt
from math import fsum
points = np.array([[0,0],\
[5,-1],\
[4,6],\
[1,3]])
d = lambda x: fsum([sqrt((x[0]-z[0])**2 + (x[1]-z[1])**2) for z in points])
x = np.linspace(min(points[:,0]),max(points[:,0]),100)
y = np.linspace(min(points[:,1]),max(points[:,1]),100)
X, Y = np.meshgrid(x,y)
Z = np.zeros(np.shape(X))
for (i,j),_ in np.ndenumerate(Z):
Z[i,j] = d([X[i,j],Y[i,j]])
#Z=d([X,Y]) #this fails
我们可以利用 broadcasting
直接与 1D
版本一起工作,从而提高内存效率,并给我们自己一个向量化的单行代码,就像这样 -
Z = np.sqrt((x[:,None] - points[:,0])**2 + (y[:,None,None] - points[:,1])**2).sum(2)
发布示例数据的时间 -
In [80]: %%timeit
...: X, Y = np.meshgrid(x,y)
...: Z = np.zeros(np.shape(X))
...: for (i,j),_ in np.ndenumerate(Z):
...: Z[i,j] = d([X[i,j],Y[i,j]])
10 loops, best of 3: 101 ms per loop
In [81]: %timeit ((x[:,None] - points[:,0])**2 + (y[:,None,None] - points[:,1])**2).sum(2)
1000 loops, best of 3: 246 µs per loop
400x
加速那里!