如果在任一列中找到,则删除两个 float64 值 Pandas

Remove both float64 values if found in either columns Pandas

如果找到非唯一值,我将尝试删除所有行,示例如下:

    N1  N2
1   2   4
2   4   5
3   6   6
4   8   7
5   10  8
6   12  10
7   NaN 12
8   NaN 14

所以在这种情况下,我想要的值是 2 5 7 和 14。而且一列比另一列长,因此必须忽略 NaN。我基本上想找到重复值并从 N1 和 N2 中删除它们。这是我试过的:

df[~df.N1.isin(['N2'])]

出现一些错误。谢谢你的帮助。

凯文

实现方法如下:

from io import StringIO
import pandas as pd

s = '''N1 N2
2 4
4 5
6 6
8 7
10 8
12 10
NaN 12
NaN 14'''

ss = StringIO(s)


df = pd.read_csv(ss, sep=r'\s+')

df = df.dropna()

df[~df.N1.isin(['N2'])]

输出:

根据您发布的值创建数据框:

import numpy as np
import pandas as pd

df = pd.DataFrame({'N1':[2, 4, 6, 8, 10, 12, np.nan, np.nan], 
                   'N2':[4,5,6,7,8,10,12,14]})

找出共同的价值观:

common = list(set(df['N1']) & set(df['N2']))

排除 N1N2 具有其中之一的所有行:

df[(~df["N1"].isin(common)) | (~df["N2"].isin(common))]

更新

common = set(df['N1']) & set(df['N2'])
result = list(set(df['N2'])-common) + list(set(df['N1'])-common)
result = [x for x in result if x==x]

快速解决方案:

>> df.stack().drop_duplicates(keep=False).unstack()

    N1    N2
1  2.0   NaN
2  NaN   5.0
4  NaN   7.0
8  NaN  14.0

作为列表:

>> df.stack().drop_duplicates(keep=False).values.tolist()

[2.0, 5.0, 7.0, 14.0]