对于某些函数,欧拉能否比龙格-库塔更好?

Can Euler be better than Runge-Kutta for some functions?

我正在尝试解决 Steven Strogatz 的非线性动力学和混沌中的练习。习题2.8.3、2.8.4、2.8.5中,初值问题预计分别实现欧拉法、改进欧拉法、龙格-库塔(四阶)法dx/dt = - X; x(0) = 1 求 x(1)。

经分析,答案是1/e。而且我发现了每种方法中获得的错误。令我惊讶的是,我在 Euler 中得到的错误比在改进的 Euler 和 Runge-Kutta 中要少!

我的代码如下所示。对不起,我的破旧。

from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt

to = 0
xo = 1
tf = 1

deltaT = np.zeros([5])
errorE = np.zeros([5])
errorIE = np.zeros([5])
errorRK = np.zeros([5])


for j in range(0,5):
  n = pow(10,j)
  deltat = (tf - to)/(n)

  print ("delta t is",deltat)

  deltaT[j] = deltat

  t = np.linspace(to,tf,n)
  xE = np.zeros([n])
  xIE = np.zeros([n])
  xRK = np.zeros([n])

  xE[0] = xo
  xIE[0] = xo
  xRK[0] = xo

  for i in range (1,n):
    #Regular Euler
    xE[i] = deltat*(-xE[i-1]) + xE[i-1]

    #Improved Euler
    IEintermediate = deltat*(-xIE[i-1]) + xIE[i-1]
    xIE[i] = xIE[i-1] - deltat*(xIE[i-1] + IEintermediate)/2 

    #Runge-Kutta fourth order
    k1 = -deltat*xRK[i-1]
    k2 = -deltat*(xRK[i-1] + k1/2)
    k3 = -deltat*(xRK[i-1] + k2/2)
    k4 = -deltat*(xRK[i-1] + k3)

    xRK[i] = xRK[i-1] + (k1 + 2*k2 + 2*k3 + k4)/6

    print (deltat,xE[i],xIE[i],xRK[i])

  errorE[j] = np.exp(-1) - xE[n-1]
  errorIE[j] = np.exp(-1) - xIE[n-1]
  errorRK[j] = np.exp(-1) - xRK[n-1]

错误:

对于 delT = 1.0

delT = 0.1

delT = 0.01

delT = 0.001

delT = 0.0001

这是合法的吗?如果不是,为什么会这样?

您只进行 n-1 个步长 h=1/n 的积分步骤,因此您计算

exp(-(n-1)/n)=1/e*exp(1/n) 

有近似值

1/e + 1/e*1/n

报告的错误值正是 -h/e,这是一阶的,因此被 1 阶欧拉方法明显扭曲。更确切地说,欧拉值是

(1-1/n)^(n-1) = exp((n-1)*(-1/n-1/(2n^2)+O(1/n^3))
              = 1/e*exp(1/(2n)+..)
              = 1/e + h/(2e) + ... 

如果您调整代码使额外的步骤达到时间 1,您将得到正确的错误图片。

delta t is  1.0
Euler          0.0             0.367879441171
imp. Euler     0.5            -0.132120558829
Runge-Kutta 4  0.375          -0.00712055882856

delta t is  0.1
Euler          0.3486784401    0.0192010010714
imp. Euler     0.368540984834 -0.00066154366211
Runge-Kutta 4  0.367879774412 -3.33241056083e-07

delta t is  0.01
Euler          0.366032341273  0.00184709989821
imp. Euler     0.367885618716 -6.17754474969e-06
Runge-Kutta 4  0.367879441202 -3.09130498977e-11

delta t is  0.001
Euler          0.367695424771  0.000184016400479
imp. Euler     0.367879502531 -6.13592486265e-08
Runge-Kutta 4  0.367879441171 -4.05231403988e-15

delta t is  0.0001
Euler          0.367861046433  1.83947385133e-05
imp. Euler     0.367879441785 -6.13176398545e-10
Runge-Kutta 4  0.367879441171 -2.6645352591e-15