初始化火炬中的权重和偏差
Initialize weights and bias in torch
Pytorch 中以下 keras 代码的等效命令是什么
Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', name='uhat_digitcaps')(d5)
如何初始化权重和偏差?
谢谢!
class Net(nn.Module):
def __init__(self, in_channels, out_channels):
self.linear = nn.Linear(in_channels, 64)
nn.init.kaiming_normal_(self.linear.weight, mode='fan_out')
nn.init.constant_(self.linear.bias, 0)
Pytorch 中以下 keras 代码的等效命令是什么
Dense(64, kernel_initializer='he_normal', bias_initializer='zeros', name='uhat_digitcaps')(d5)
如何初始化权重和偏差?
谢谢!
class Net(nn.Module):
def __init__(self, in_channels, out_channels):
self.linear = nn.Linear(in_channels, 64)
nn.init.kaiming_normal_(self.linear.weight, mode='fan_out')
nn.init.constant_(self.linear.bias, 0)