在 Python 中,SciPY ode.int 的超额完成工作问题

In Python, excess work done problem for SciPY ode.int

我正在尝试模拟 bug 在二维平面中相互追逐的追逐问题,我正在使用 SciPY.odeint 来帮助我解决这个问题。使用以下代码,该模型可以工作,但是随着错误越来越近,模型会崩溃并发出在此调用上完成的多余工作(可能是错误的 Dfun 类型)错误。

import numpy as np
from scipy.integrate import odeint

def split_list(a_list):
    half = len(a_list)//2
    return a_list[:half], a_list[half:]

def diff(w, t):
    x_points, y_points = split_list(w)
    def abso(f, s):
        return np.sqrt((x_points[f] - x_points[s])**2 + (y_points[f] - y_points[s])**2)
    x_funct = [(x_points[i+1] - x_points[i]) / abso(i+1, i) for i in range(len(x_points) - 1)]
    x_funct.append((x_points[0] - x_points[-1]) / abso(0,-1))

    y_funct = [(y_points[i+1] - y_points[i]) / abso(i+1,i) for i in range(len(x_points) - 1)]
    y_funct.append((y_points[0] - y_points[-1]) / abso(0,-1))
    funct = x_funct + y_funct
    return funct

def ode(tstart, tend, init_cond):

    t = np.linspace(tstart, tend, step_size)

    wsol = odeint(diff, init_cond, t)
    sols = [wsol[:,i] for i in range(len(init_cond))]
    x_sols, y_sols = split_list(sols)
    return x_sols, y_sols, t, tend

bug_init_cond = [[-0.5, 1],
                 [0.5, 1],
                 [0.5, -1],
                 [-0.5, -1],]

amount_of_bugs = 4
step_size = 10000

x_sols, y_sols, t, tend = ode(0, 5, [bug_init_cond[i][j] for j in range(2) for i in range(amount_of_bugs)])

由于我对使用 Scipy.odeint 函数还很陌生,我想知道是否有解决这些多余工作的方法?谢谢你的时间。

您的问题是,在精确解中,路径在时间 t=1.48t=1.5 相遇。在一个精确的解决方案中,你会得到除以零的错误,浮点噪声是 "degraded" 到一个僵硬的情况,其中步长被调节直到输出时间步长需要超过 mxstep=500 内部步骤。

您可以添加条件,以便在头寸平仓时将右侧设置为零。一种快速实现的方法是将距离函数 abso 修改为

  def abso(f, s):
    return np.sqrt(1e-12+(x_points[f] - x_points[s])**2 + (y_points[f] - y_points[s])**2)

因此您永远不会除以零,并且对于可见距离,扰动可以忽略不计。