DecisionTreeRegressor 等同于 predict_proba

Equivalent of predict_proba for DecisionTreeRegressor

scikit-learn 的 DecisionTreeClassifier 支持通过 predict_proba() 函数预测每个 class 的概率。 DecisionTreeRegressor:

中没有

AttributeError: 'DecisionTreeRegressor' object has no attribute 'predict_proba'

我的理解是,决策树 classifier 和回归器之间的基本机制非常相似,主要区别在于回归器的预测是作为潜在叶子的均值计算的。所以我希望能够提取每个值的概率。

有没有其他方法来模拟这个,例如通过为 DecisionTreeClassifier 处理 tree structure? The codepredict_proba 不能直接转移。

您可以从树结构中获取该数据:

import sklearn
import numpy as np
import graphviz
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
from sklearn.datasets import make_regression

# Generate a simple dataset
X, y = make_regression(n_features=2, n_informative=2, random_state=0)
clf = DecisionTreeRegressor(random_state=0, max_depth=2)
clf.fit(X, y)
# Visualize the tree
graphviz.Source(sklearn.tree.export_graphviz(clf)).view()

>>> clf.predict(X[:5])

0     184.005667
1      53.017289
2     184.005667
3     -20.603498
4     -97.414461

如果您调用 clf.apply(X) 您将获得实例所属的节点 ID:

array([6, 5, 6, 3, 2, 5, 5, 3, 6, ... 5, 5, 6, 3, 2, 2, 5, 2, 2], dtype=int64)

将其与目标变量合并:

df = pd.DataFrame(np.vstack([y, clf.apply(X)]), index=['y','node_id']).T
    y           node_id
0   190.370562  6.0
1   13.339570   5.0
2   141.772669  6.0
3   -3.069627   3.0
4   -26.062465  2.0
5   54.922541   5.0
6   25.952881   5.0
       ...

现在,如果您在 node_id 上执行 groupby 后跟均值,您将获得与 clf.predict(X)

相同的值
>>> df.groupby('node_id').mean()
                 y
node_id     
2.0     -97.414461
3.0     -20.603498
5.0     53.017289
6.0     184.005667

我们树中的 value 个叶子是什么:

>>> clf.tree_.value[6]
array([[184.00566679]])

要获取新数据集的节点 ID,您需要调用

clf.decision_path(X[:5]).toarray()

它显示了这样一个数组

array([[1, 0, 0, 0, 1, 0, 1],
       [1, 0, 0, 0, 1, 1, 0],
       [1, 0, 0, 0, 1, 0, 1],
       [1, 1, 0, 1, 0, 0, 0],
       [1, 1, 1, 0, 0, 0, 0]], dtype=int64)

你需要在哪里获取最后一个非零元素(即叶子)

>>> pd.DataFrame(clf.decision_path(X[:5]).toarray()).apply(lambda x:x.nonzero()[0].max(), axis=1)
0    6
1    5
2    6
3    3
4    2
dtype: int64

所以如果你想预测中位数而不是预测均值,你会做

>>> pd.DataFrame(clf.decision_path(X[:5]).toarray()).apply(lambda x: x.nonzero()[0].max(
    ), axis=1).to_frame(name='node_id').join(df.groupby('node_id').median(), on='node_id')['y']
0    181.381106
1     54.053170
2    181.381106
3    -28.591188
4    -93.891889

此函数改编自 的代码以提供每个结果的概率:

from sklearn.tree import DecisionTreeRegressor
import pandas as pd

def decision_tree_regressor_predict_proba(X_train, y_train, X_test, **kwargs):
    """Trains DecisionTreeRegressor model and predicts probabilities of each y.

    Args:
        X_train: Training features.
        y_train: Training labels.
        X_test: New data to predict on.
        **kwargs: Other arguments passed to DecisionTreeRegressor.

    Returns:
        DataFrame with columns for record_id (row of X_test), y 
        (predicted value), and prob (of that y value).
        The sum of prob equals 1 for each record_id.
    """
    # Train model.
    m = DecisionTreeRegressor(**kwargs).fit(X_train, y_train)
    # Get y values corresponding to each node.
    node_ys = pd.DataFrame({'node_id': m.apply(X_train), 'y': y_train})
    # Calculate probability as 1 / number of y values per node.
    node_ys['prob'] = 1 / node_ys.groupby(node_ys.node_id).transform('count')
    # Aggregate per node-y, in case of multiple training records with the same y.
    node_ys_dedup = node_ys.groupby(['node_id', 'y']).prob.sum().to_frame()\
        .reset_index()
    # Extract predicted leaf node for each new observation.
    leaf = pd.DataFrame(m.decision_path(X_test).toarray()).apply(
        lambda x:x.to_numpy().nonzero()[0].max(), axis=1).to_frame(
            name='node_id')
    leaf['record_id'] = leaf.index
    # Merge with y values and drop node_id.
    return leaf.merge(node_ys_dedup, on='node_id').drop(
        'node_id', axis=1).sort_values(['record_id', 'y'])

示例(参见 this notebook):

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Works better with min_samples_leaf > 1.
res = decision_tree_regressor_predict_proba(X_train, y_train, X_test,
                                            random_state=0, min_samples_leaf=5)
res[res.record_id == 2]
#      record_id       y        prob
#   25         2    20.6    0.166667
#   26         2    22.3    0.166667
#   27         2    22.7    0.166667
#   28         2    23.8    0.333333
#   29         2    25.0    0.166667