Sci-kit Learn Confusion Matrix:发现样本数量不一致的输入变量

Sci-kit Learn Confusion Matrix: Found input variables with inconsistent numbers of samples

我试图在预测测试标签和实际测试标签之间绘制混淆矩阵,但出现此错误

ValueError: Found input variables with inconsistent numbers of samples: [1263, 12630]

数据集:GTSRB

使用的代码

图像增强

train_datagen = ImageDataGenerator(rescale=1./255,
                            rotation_range=20,
                            horizontal_flip=True,
                            width_shift_range=0.1,
                            height_shift_range=0.1,
                            shear_range=0.01,
                            zoom_range=[0.9, 1.25],
                            brightness_range=[0.5, 1.5])

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator 和 test_generator

batch_size = 10

train_generator = train_datagen.flow_from_directory(
    directory=train_path,
    target_size=(224, 224),
    color_mode="rgb",
    batch_size=batch_size,
    class_mode="categorical",
    shuffle=True,
    seed=42
)

test_generator = test_datagen.flow_from_directory(
    directory=test_path,
    target_size=(224, 224),
    color_mode="rgb",
    batch_size=batch_size,
    class_mode="categorical",
    shuffle=False,
    seed=42
)

该代码的输出

Found 39209 images belonging to 43 classes.

Found 12630 images belonging to 43 classes.

然后,我使用了 VGG-16 模型并将最新的 Dense 层替换为 Dense(43, activation='softmax')

模型总结

_________________________________________________________________ 
Layer (type)                 Output Shape              Param #   
================================================================= 
block1_conv1 (Conv2D)        (None, 224, 224, 64)      1792      
_________________________________________________________________ 
block1_conv2 (Conv2D)        (None, 224, 224, 64)      36928     
_________________________________________________________________ 
block1_pool (MaxPooling2D)   (None, 112, 112, 64)      0         
_________________________________________________________________ 
block2_conv1 (Conv2D)        (None, 112, 112, 128)     73856     
_________________________________________________________________ 
block2_conv2 (Conv2D)        (None, 112, 112, 128)     147584    
_________________________________________________________________ 
block2_pool (MaxPooling2D)   (None, 56, 56, 128)       0         
_________________________________________________________________ 
block3_conv1 (Conv2D)        (None, 56, 56, 256)       295168    
_________________________________________________________________ 
block3_conv2 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________ 
block3_conv3 (Conv2D)        (None, 56, 56, 256)       590080    
_________________________________________________________________ 
block3_pool (MaxPooling2D)   (None, 28, 28, 256)       0         
_________________________________________________________________ 
block4_conv1 (Conv2D)        (None, 28, 28, 512)       1180160   
_________________________________________________________________ 
block4_conv2 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________ 
block4_conv3 (Conv2D)        (None, 28, 28, 512)       2359808   
_________________________________________________________________ 
block4_pool (MaxPooling2D)   (None, 14, 14, 512)       0         
_________________________________________________________________ 
block5_conv1 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________ 
block5_conv2 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________ 
block5_conv3 (Conv2D)        (None, 14, 14, 512)       2359808   
_________________________________________________________________ 
block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         
_________________________________________________________________ 
flatten (Flatten)            (None, 25088)             0         
_________________________________________________________________ 
fc1 (Dense)                  (None, 4096)              102764544 
_________________________________________________________________ 
fc2 (Dense)                  (None, 4096)              16781312  
_________________________________________________________________ 
predictions (Dense)          (None, 1000)              4097000   
_________________________________________________________________ 
dense_1 (Dense)              (None, 43)                43043     
================================================================= 
Total params: 138,400,587 
Trainable params: 43,043 
Non-trainable params: 138,357,544
_________________________________________________________________

编译模型

my_sgd = SGD(lr=0.01)

model.compile(
    optimizer=my_sgd,
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

训练模型

STEP_SIZE_TRAIN=train_generator.n//train_generator.batch_size
epochs=10
model.fit_generator(generator=train_generator,
                    steps_per_epoch=STEP_SIZE_TRAIN,
                    epochs=epochs, 
                    verbose=1
)

预测

STEP_SIZE_TEST=test_generator.n//test_generator.batch_size
test_generator.reset()

predictions = model.predict_generator(test_generator, steps=STEP_SIZE_TEST, verbose=1)

输出

1263/1263 [==============================] - 229s 181ms/step

预测形状 打印(predictions.shape)

(12630, 43)

获取 test_data 和 test_labels

test_data = []
test_labels = []
batch_index = 0

while batch_index <= test_generator.batch_index:
    data = next(test_generator)
    test_data.append(data[0])
    test_labels.append(data[1])
    batch_index = batch_index + 1

test_data_array = np.asarray(test_data)
test_labels_array = np.asarray(test_labels)

test_data_array 和 test_labels_array

的形状
test_data_array.shape

(1263, 10, 224, 224, 3)

test_labels_array.shape

(1263, 10, 43)

混淆矩阵

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(test_labels_array, predictions)

我得到了输出

ValueError: Found input variables with inconsistent numbers of samples: [1263, 12630]

我知道这个错误是因为 test_labels_array 大小不等于预测;分别是 1263 和 12630,但我真的不知道我做错了什么。

如有任何帮助,我们将不胜感激。

PS:如果有人有任何关于如何提高训练准确性的提示,那就太好了。

谢谢!

您应该按如下方式重塑 test_data_arraytest_labels_array

data_count, batch_count, w, h, c = test_data_array.shape

test_data_array=np.reshape(test_data_array, (data_count*batch_count, w, h, c))
test_labels_array = np.reshape(test_labels_array , (data_count*batch_count, -1))

您附加 test_generator 结果的方式就是原因。事实上,您的 test_generator 的第一次调用将生成 10 个形状为 (224, 224, 3) 的数据。对于下一次再次调用,您的 test_generator 将生成 10 个形状为 (224, 224, 3) 的数据。所以现在您应该有 20 个形状数据 (224, 224, 3),而您附加结果的方式会导致您得到 2 个形状数据 (10, 224, 224, 3)。这不是你所期待的。