Graphviz:树结构

Graphviz: tree structure

我想使用 graphviz 生成结构树,从左到右的结构(请忽略颜色):

我得出的结论是我需要使用不可见节点来实现它,我当前的代码如下所示:

digraph G { 
  node [ shape="box", width = 2, height = 1, fixedsize=true];
  edge [arrowhead=none];
  nodesep = 1;
  ranksep=0.05;
  splines = ortho;
  rankdir = LR;

  A1 [ shape="box", width = 2, height = 1, fixedsize=true];
  B1 [ shape="box", width = 2, height = 1, fixedsize=true];
  B2 [ shape="box", width = 2, height = 1, fixedsize=true];
  B3 [ shape="box", width = 2, height = 1, fixedsize=true];
  B4 [ shape="box", width = 2, height = 1, fixedsize=true];
  B5 [ shape="box", width = 2, height = 1, fixedsize=true];
  B6 [ shape="box", width = 2, height = 1, fixedsize=true];

  W0 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];
  W1 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];
  W2 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];
  W3 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];
  W4 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];
  W5 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];
  W6 [ shape="circle", width = 0, height = 0, fixedsize=true, label=""];

  subgraph {
    A1 -> W0
    W0 -> W3
    W3 -> W2
    W2 -> W1
    W0 -> W4
    W4 -> W5
    W5 -> W6

    W1 -> B1
    W2 -> B2
    W3 -> B3
    W4 -> B4
    W5 -> B5
    W6 -> B6

    {rank = same; A1;}
    {rank = same; B1; B2; B3; B4; B5; B6;}
    {rank = same; W0; W1; W2; W3; W4; W5; W6;}
  }
}

使用点引擎我得到:

我的问题:

我可以强制某些节点占据中心位置 (A1) 吗?

我可以强制边连接到节点形状边界上的特定位置(例如:左中)吗?

也许有更好的方法来实现这种以节点为中心的树结构(我必须考虑到树的下一层可能会非常复杂)

为了得到你想要的,你需要

  • 按照您希望绘制节点的顺序定义节点(在此处给出的示例中不是绝对必要的,但很好的做法)
  • 确保空节点处于同一等级(您已经拥有)
  • 并将这些空节点以正确的顺序相互连接(这是这里的关键项)

应用这些更改,并简单地修改您的代码(您可能喜欢或不喜欢,这就是我的做法),我得到

digraph G { 
  edge [arrowhead=none];
  nodesep = 1;
  ranksep=0.05;
  splines = ortho;
  rankdir = LR;

  node [ shape="box", width = 2, height = 1, fixedsize=true];
  A1;
  B4 B5 B6 B3 B2 B1;

  node [ shape="point", width = 0, height = 0 ];
  { rank = same; W4 W5 W6 W0 W3 W2 W1 }

  A1 -> W0;
  W4 -> W5 -> W6 -> W0 -> W3 -> W2 -> W1;        /* critical! */
  W1 -> B1;
  W2 -> B2;
  W3 -> B3;
  W4 -> B4;
  W5 -> B5;
  W6 -> B6;
}

产生