在 Golang 中计算大幂
Calculating large exponentiation in Golang
我一直在尝试用 Golang 计算 2^100
。我了解 limit of numeric type 并尝试使用 math/big
包。这是我尝试过的方法,但我不明白为什么它不起作用。
我使用了computation by powers of two 方法来计算幂。
package main
import (
"fmt"
"math/big"
)
func main() {
two := big.NewInt(2)
hundred := big.NewInt(50)
fmt.Printf("2 ** 100 is %d\n", ExpByPowOfTwo(two, hundred))
}
func ExpByPowOfTwo(base, power *big.Int) *big.Int {
result := big.NewInt(1)
zero := big.NewInt(0)
for power != zero {
if modBy2(power) != zero {
multiply(result, base)
}
power = divideBy2(power)
base = multiply(base, base)
}
return result
}
func modBy2(x *big.Int) *big.Int {
return big.NewInt(0).Mod(x, big.NewInt(2))
}
func divideBy2(x *big.Int) *big.Int {
return big.NewInt(0).Div(x, big.NewInt(2))
}
func multiply(x, y *big.Int) *big.Int {
return big.NewInt(0).Mul(x, y)
}
如果 power % 2 == 0
,您将立即返回。相反,您只想获得 base ** (power /2)
的 result
。然后乘以 result * result
,如果 power
是偶数,则乘以 base
。
例如,
package main
import (
"fmt"
"math/big"
)
func main() {
z := new(big.Int).Exp(big.NewInt(2), big.NewInt(100), nil)
fmt.Println(z)
}
输出:
1267650600228229401496703205376
因为它是 2 的幂,你也可以做一点移位:
package main
import (
"fmt"
"math/big"
)
func main() {
z := new(big.Int).Lsh(big.NewInt(1), 100)
fmt.Println(z)
}
输出:
1267650600228229401496703205376
BigInt 包允许您calculate x^y in log time(由于某种原因它被称为 exp)。您只需要将 nil
作为最后一个参数传递即可。
package main
import (
"fmt"
"math/big"
)
func main() {
fmt.Println(new(big.Int).Exp(big.NewInt(5), big.NewInt(20), nil))
}
有兴趣自己计算的可以看看我的实现:
func powBig(a, n int) *big.Int{
tmp := big.NewInt(int64(a))
res := big.NewInt(1)
for n > 0 {
temp := new(big.Int)
if n % 2 == 1 {
temp.Mul(res, tmp)
res = temp
}
temp = new(big.Int)
temp.Mul(tmp, tmp)
tmp = temp
n /= 2
}
return res
}
或在 go playground.
上玩
计算2^100
package main
import (
"fmt"
"math/big"
)
func main() {
n := big.NewInt(0)
fmt.Println(n.SetBit(n, 100, 1))
}
package main
import(
"fmt"
"math/big"
)
func main() {
bigx, power10 := new(big.Int), new(big.Int)
var x int64
bigx.SetInt64(x) //set x int64 to bigx
power10.Exp(big.NewInt(10), bigx, nil) //power10 *big.Int points to solution
str10 := power10.Text(10)
fmt.Printf(str10) // print out the number and check for your self
}
我一直在尝试用 Golang 计算 2^100
。我了解 limit of numeric type 并尝试使用 math/big
包。这是我尝试过的方法,但我不明白为什么它不起作用。
我使用了computation by powers of two 方法来计算幂。
package main
import (
"fmt"
"math/big"
)
func main() {
two := big.NewInt(2)
hundred := big.NewInt(50)
fmt.Printf("2 ** 100 is %d\n", ExpByPowOfTwo(two, hundred))
}
func ExpByPowOfTwo(base, power *big.Int) *big.Int {
result := big.NewInt(1)
zero := big.NewInt(0)
for power != zero {
if modBy2(power) != zero {
multiply(result, base)
}
power = divideBy2(power)
base = multiply(base, base)
}
return result
}
func modBy2(x *big.Int) *big.Int {
return big.NewInt(0).Mod(x, big.NewInt(2))
}
func divideBy2(x *big.Int) *big.Int {
return big.NewInt(0).Div(x, big.NewInt(2))
}
func multiply(x, y *big.Int) *big.Int {
return big.NewInt(0).Mul(x, y)
}
如果 power % 2 == 0
,您将立即返回。相反,您只想获得 base ** (power /2)
的 result
。然后乘以 result * result
,如果 power
是偶数,则乘以 base
。
例如,
package main
import (
"fmt"
"math/big"
)
func main() {
z := new(big.Int).Exp(big.NewInt(2), big.NewInt(100), nil)
fmt.Println(z)
}
输出:
1267650600228229401496703205376
因为它是 2 的幂,你也可以做一点移位:
package main
import (
"fmt"
"math/big"
)
func main() {
z := new(big.Int).Lsh(big.NewInt(1), 100)
fmt.Println(z)
}
输出:
1267650600228229401496703205376
BigInt 包允许您calculate x^y in log time(由于某种原因它被称为 exp)。您只需要将 nil
作为最后一个参数传递即可。
package main
import (
"fmt"
"math/big"
)
func main() {
fmt.Println(new(big.Int).Exp(big.NewInt(5), big.NewInt(20), nil))
}
有兴趣自己计算的可以看看我的实现:
func powBig(a, n int) *big.Int{
tmp := big.NewInt(int64(a))
res := big.NewInt(1)
for n > 0 {
temp := new(big.Int)
if n % 2 == 1 {
temp.Mul(res, tmp)
res = temp
}
temp = new(big.Int)
temp.Mul(tmp, tmp)
tmp = temp
n /= 2
}
return res
}
或在 go playground.
上玩计算2^100
package main
import (
"fmt"
"math/big"
)
func main() {
n := big.NewInt(0)
fmt.Println(n.SetBit(n, 100, 1))
}
package main
import(
"fmt"
"math/big"
)
func main() {
bigx, power10 := new(big.Int), new(big.Int)
var x int64
bigx.SetInt64(x) //set x int64 to bigx
power10.Exp(big.NewInt(10), bigx, nil) //power10 *big.Int points to solution
str10 := power10.Text(10)
fmt.Printf(str10) // print out the number and check for your self
}