tf.image.decode_jpeg - 内容必须是标量,形状为 [1]

tf.image.decode_jpeg - contents must be scalar, got shape [1]

我已经构建了一个 server/client 演示,用于通过 tensorflow 服务进行图像分类,遵循本教程 https://github.com/tmlabonte/tendies/blob/master/minimum_working_example/tendies-basic-tutorial.ipynb

客户

它接受图像作为输入,将其转换为 Base64,使用 JSON

将其传递给服务器
input_image = open(image, "rb").read()
print("Raw bitstring: " + str(input_image[:10]) + " ... " + str(input_image[-10:]))

# Encode image in b64
encoded_input_string = base64.b64encode(input_image)
input_string = encoded_input_string.decode("utf-8")
print("Base64 encoded string: " + input_string[:10] + " ... " + input_string[-10:])

# Wrap bitstring in JSON
instance = [{"images": input_string}]
data = json.dumps({"instances": instance})
print(data[:30] + " ... " + data[-10:])

r = requests.post('http://localhost:9000/v1/models/cnn:predict', data=data)
  #json.loads(r.content)
print(r.text)

服务器

将模型加载为 .h5 后,服务器必须另存为 SavedModel。 图像必须作为 Base64 编码字符串从客户端传递到服务器。

model=tf.keras.models.load_model('./model.h5')
  input_bytes = tf.placeholder(tf.string, shape=[], name="input_bytes")
#  input_bytes = tf.reshape(input_bytes, [])
    # Transform bitstring to uint8 tensor
  input_tensor = tf.image.decode_jpeg(input_bytes, channels=3)

    # Convert to float32 tensor
  input_tensor = tf.image.convert_image_dtype(input_tensor, dtype=tf.float32)
  input_tensor = input_tensor / 127.5 - 1.0

    # Ensure tensor has correct shape
  input_tensor = tf.reshape(input_tensor, [64, 64, 3])

    # CycleGAN's inference function accepts a batch of images
    # So expand the single tensor into a batch of 1
  input_tensor = tf.expand_dims(input_tensor, 0)


#  x = model.input
  y = model(input_tensor)

然后 input_bytes 成为 SavedModel

中 predition_signature 的输入
 tensor_info_x = tf.saved_model.utils.build_tensor_info(input_bytes)

最后服务器结果如下:

§ saved_model_cli show --dir ./ --all

signature_def['predict']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['images'] tensor_info:
        dtype: DT_STRING
        shape: ()
        name: input_bytes:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['scores'] tensor_info:
        dtype: DT_FLOAT
        shape: (1, 4)
        name: sequential_1/dense_2/Softmax:0
  Method name is: tensorflow/serving/predict

发送图片

当我发送图像 base64 时,我收到来自服务器的 运行 次错误,关于输入的形状似乎不是标量:

Using TensorFlow backend.
Raw bitstring: b'\xff\xd8\xff\xe0\x00\x10JFIF' ... b'0;s\xcfJ(\xa0h\xff\xd9'
Base64 encoded string: /9j/4AAQSk ... 9KKKBo/9k=
{"instances": [{"images": "/9j ... Bo/9k="}]}
{ "error": "contents must be scalar, got shape [1]\n\t [[{{node DecodeJpeg}} = DecodeJpeg[_output_shapes=[[?,?,3]], acceptable_fraction=1, channels=3, dct_method=\"\", fancy_upscaling=true, ratio=1, try_recover_truncated=false, _device=\"/job:localhost/replica:0/task:0/device:CPU:0\"](_arg_input_bytes_0_0)]]" }

正如您从服务器看到的那样,input_bytesshape=[] 一样是标量,我也尝试用 tf.reshape(input_bytes, []) 重塑它,但没办法,我总是得到同样的错误. 我没有在互联网上和 Whosebug 中找到有关此错误的任何解决方案。你能建议如何解决它吗? 谢谢!

我解决了这个问题,我想评论一下如何让您从解决方案中受益!

当您像这样发送 json 时:

{"instances": [{"images": "/9j ... Bo/9k="}]}

实际上你在发送 [] 时发送了一个大小为 1 的数组 如果您想发送 2 张图片,您应该这样写

{"instances": [{"images": "/9j ... Bo/9k="}, {"images": "/9j ... Bo/9k="}]}

这里的尺寸是 2 (shape = [2])

所以解决方案是在占位符中声明接受任何类型的 shape=[None]

input_bytes = tf.placeholder(tf.string, shape=[None], name="input_bytes")

那么如果您只发送 1 张图像,则矢量 1 可以通过以下方式转换为标量:

input_scalar = tf.reshape(input_bytes, [])

我的代码中还有另一个错误,我没有考虑到 tensorflow/serving 中有通过在 json 中明确说明 'b64' 来解码 base64 的功能,请参阅到 RESTful API Encoding binary values,所以如果你发送

{"instances": [{"images": {"b64": "/9j ... Bo/9k="}}]}

服务器将自动解码 base64 输入,正确的比特流将到达 tf.image.decode_jpeg