R 中的机器学习 - 集成的混淆矩阵

Machine Learning in R - confusion matrix of an ensemble

我正在尝试访问多个分类器的总体准确度(或混淆矩阵),但似乎找不到如何报告这一点。

已经尝试过:

confusionMatrix(fits_predicts,reference=(mnist_27$test$y))

Error in table(data, reference, dnn = dnn, ...) : all arguments must have the same length

library(caret)
library(dslabs)
set.seed(1)
data("mnist_27")

models <- c("glm", "lda",  "naive_bayes",  "svmLinear", 
            "gamboost",  "gamLoess", "qda", 
            "knn", "kknn", "loclda", "gam",
            "rf", "ranger",  "wsrf", "Rborist", 
            "avNNet", "mlp", "monmlp",
            "adaboost", "gbm",
            "svmRadial", "svmRadialCost", "svmRadialSigma")

fits <- lapply(models, function(model){ 
  print(model)
  train(y ~ ., method = model, data = mnist_27$train)
}) 

names(fits) <- models

fits_predicts <- sapply(fits, function(fits){ predict(fits,mnist_27$test)
  })

我想报告不同模型中的 confusionMatrix。

您没有训练任何 ensemble;你只是训练了几个模型的列表,没有以任何方式组合它们,这绝对不是一个集合。

鉴于此,您得到的错误并不意外,因为 confusionMatrix 期望单个预测(如果您确实有一个整体,情况就是如此),而不是多个预测。

为简单起见,只保留前 4 个模型的列表,并稍微更改 fits_predicts 定义,以便它提供数据框,即:

models <- c("glm", "lda",  "naive_bayes",  "svmLinear")

fits_predicts <- as.data.frame( sapply(fits, function(fits){ predict(fits,mnist_27$test)
}))

# rest of your code as-is

这里是如何获得每个模型的混淆矩阵

cm <- lapply(fits_predicts, function(fits_predicts){confusionMatrix(fits_predicts,reference=(mnist_27$test$y))
})

这给出了

> cm
$glm
Confusion Matrix and Statistics

          Reference
Prediction  2  7
         2 82 26
         7 24 68

               Accuracy : 0.75           
                 95% CI : (0.684, 0.8084)
    No Information Rate : 0.53           
    P-Value [Acc > NIR] : 1.266e-10      

                  Kappa : 0.4976         
 Mcnemar's Test P-Value : 0.8875         

            Sensitivity : 0.7736         
            Specificity : 0.7234         
         Pos Pred Value : 0.7593         
         Neg Pred Value : 0.7391         
             Prevalence : 0.5300         
         Detection Rate : 0.4100         
   Detection Prevalence : 0.5400         
      Balanced Accuracy : 0.7485         

       'Positive' Class : 2              


$lda
Confusion Matrix and Statistics

          Reference
Prediction  2  7
         2 82 26
         7 24 68

               Accuracy : 0.75           
                 95% CI : (0.684, 0.8084)
    No Information Rate : 0.53           
    P-Value [Acc > NIR] : 1.266e-10      

                  Kappa : 0.4976         
 Mcnemar's Test P-Value : 0.8875         

            Sensitivity : 0.7736         
            Specificity : 0.7234         
         Pos Pred Value : 0.7593         
         Neg Pred Value : 0.7391         
             Prevalence : 0.5300         
         Detection Rate : 0.4100         
   Detection Prevalence : 0.5400         
      Balanced Accuracy : 0.7485         

       'Positive' Class : 2              


$naive_bayes
Confusion Matrix and Statistics

          Reference
Prediction  2  7
         2 88 23
         7 18 71

               Accuracy : 0.795           
                 95% CI : (0.7323, 0.8487)
    No Information Rate : 0.53            
    P-Value [Acc > NIR] : 5.821e-15       

                  Kappa : 0.5873          
 Mcnemar's Test P-Value : 0.5322          

            Sensitivity : 0.8302          
            Specificity : 0.7553          
         Pos Pred Value : 0.7928          
         Neg Pred Value : 0.7978          
             Prevalence : 0.5300          
         Detection Rate : 0.4400          
   Detection Prevalence : 0.5550          
      Balanced Accuracy : 0.7928          

       'Positive' Class : 2               


$svmLinear
Confusion Matrix and Statistics

          Reference
Prediction  2  7
         2 81 24
         7 25 70

               Accuracy : 0.755           
                 95% CI : (0.6894, 0.8129)
    No Information Rate : 0.53            
    P-Value [Acc > NIR] : 4.656e-11       

                  Kappa : 0.5085          
 Mcnemar's Test P-Value : 1               

            Sensitivity : 0.7642          
            Specificity : 0.7447          
         Pos Pred Value : 0.7714          
         Neg Pred Value : 0.7368          
             Prevalence : 0.5300          
         Detection Rate : 0.4050          
   Detection Prevalence : 0.5250          
      Balanced Accuracy : 0.7544          

       'Positive' Class : 2       

您还可以访问每个模型的单个混淆矩阵,例如对于 lda:

> cm['lda']
$lda
Confusion Matrix and Statistics

          Reference
Prediction  2  7
         2 82 26
         7 24 68

               Accuracy : 0.75           
                 95% CI : (0.684, 0.8084)
    No Information Rate : 0.53           
    P-Value [Acc > NIR] : 1.266e-10      

                  Kappa : 0.4976         
 Mcnemar's Test P-Value : 0.8875         

            Sensitivity : 0.7736         
            Specificity : 0.7234         
         Pos Pred Value : 0.7593         
         Neg Pred Value : 0.7391         
             Prevalence : 0.5300         
         Detection Rate : 0.4100         
   Detection Prevalence : 0.5400         
      Balanced Accuracy : 0.7485         

       'Positive' Class : 2