MySQL 对包含空值的 window 求和 returns null

MySQL sum over a window that contains a null value returns null

我正在尝试获取每个客户过去 3 个月行(不包括当前行)的收入总和。当前在 Databricks 中尝试的最小示例:

cols = ['Client','Month','Revenue']
df_pd = pd.DataFrame([['A',201701,100],
                   ['A',201702,101],
                   ['A',201703,102],
                   ['A',201704,103],
                   ['A',201705,104],
                   ['B',201701,201],
                   ['B',201702,np.nan],
                   ['B',201703,203],
                   ['B',201704,204],
                   ['B',201705,205],
                   ['B',201706,206],
                   ['B',201707,207]                
                  ])
df_pd.columns = cols

spark_df = spark.createDataFrame(df_pd)
spark_df.createOrReplaceTempView('df_sql')

df_out = sqlContext.sql("""
select *, (sum(ifnull(Revenue,0)) over (partition by Client
  order by Client,Month
  rows between 3 preceding and 1 preceding)) as Total_Sum3
  from df_sql
  """)
df_out.show()

+------+------+-------+----------+
|Client| Month|Revenue|Total_Sum3|
+------+------+-------+----------+
|     A|201701|  100.0|      null|
|     A|201702|  101.0|     100.0|
|     A|201703|  102.0|     201.0|
|     A|201704|  103.0|     303.0|
|     A|201705|  104.0|     306.0|
|     B|201701|  201.0|      null|
|     B|201702|    NaN|     201.0|
|     B|201703|  203.0|       NaN|
|     B|201704|  204.0|       NaN|
|     B|201705|  205.0|       NaN|
|     B|201706|  206.0|     612.0|
|     B|201707|  207.0|     615.0|
+------+------+-------+----------+

如您所见,如果第 3 个月 window 中的任何位置存在空值,则返回空值。我想将空值视为 0,因此进行了 ifnull 尝试,但这似乎不起作用。我也试过用 case 语句将 NULL 更改为 0,但没有成功。

只是 coalesce 外和:

df_out = sqlContext.sql("""
  select *, coalesce(sum(Revenue) over (partition by Client
  order by Client,Month
  rows between 3 preceding and 1 preceding)), 0) as Total_Sum3
  from df_sql
 """)

这是 Apache Spark,我的错! (我在 Databricks 工作,我认为它是 MySQL 的幕后黑手)。是不是来不及改标题了?

@Barmar,您是对的,IFNULL() 不会将 NaN 视为 null。感谢@user6910411,我从这里找到了修复方法:SO link。我不得不更改 numpy NaN 以引发空值。创建示例 df_pd 后的正确代码:

spark_df = spark.createDataFrame(df_pd)

from pyspark.sql.functions import isnan, col, when

#this converts all NaNs in numeric columns to null:
spark_df = spark_df.select([
    when(~isnan(c), col(c)).alias(c) if t in ("double", "float") else c 
    for c, t in spark_df.dtypes])

spark_df.createOrReplaceTempView('df_sql')

df_out = sqlContext.sql("""
select *, (sum(ifnull(Revenue,0)) over (partition by Client
  order by Client,Month
  rows between 3 preceding and 1 preceding)) as Total_Sum3
  from df_sql order by Client,Month
  """)
df_out.show()

然后给出所需的:

+------+------+-------+----------+
|Client| Month|Revenue|Total_Sum3|
+------+------+-------+----------+
|     A|201701|  100.0|      null|
|     A|201702|  101.0|     100.0|
|     A|201703|  102.0|     201.0|
|     A|201704|  103.0|     303.0|
|     A|201705|  104.0|     306.0|
|     B|201701|  201.0|      null|
|     B|201702|   null|     201.0|
|     B|201703|  203.0|     201.0|
|     B|201704|  204.0|     404.0|
|     B|201705|  205.0|     407.0|
|     B|201706|  206.0|     612.0|
|     B|201707|  207.0|     615.0|
+------+------+-------+----------+

sqlContext 是解决这个问题的最佳方法吗?还是通过 pyspark.sql.window 实现相同的结果会更好/更优雅?