net.load_state_dict(torch.load('rnn_x_epoch.net')) 无法在 cpu 上工作

net.load_state_dict(torch.load('rnn_x_epoch.net')) not working on cpu

我正在使用 pytorch 来训练神经网络。当我在 GPU 上训练和测试时,它工作正常。 但是当我尝试使用 CPU 加载模型参数时:

net.load_state_dict(torch.load('rnn_x_epoch.net'))

我收到以下错误:

RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at torch/csrc/cuda/Module.cpp:51

我已经搜索了错误,主要是因为 CUDA 驱动程序依赖性,但是由于我 运行ning on CPU 当我得到这个错误时,它一定是其他原因,或者可能是我错过了什么。 由于它使用 GPU 工作正常,我可以在 GPU 上 运行 它,但我正在尝试在 GPU 上训练网络,存储参数,然后将其加载到 CPU 模式以进行预测。 我只是在寻找一种在 CPU 模式下加载参数的方法。

我也试过这个来加载参数:

check = torch.load('rnn_x_epoch.net')

没用。

我尝试以两种方式保存模型参数,以查看其中任何一种是否可行,但没有: 1)

checkpoint = {'n_hidden': net.n_hidden,
          'n_layers': net.n_layers,
          'state_dict': net.state_dict(),
          'tokens': net.chars}

with open('rnn_x_epoch.net', 'wb') as f:
    torch.save(checkpoint, f)

2)

torch.save(model.state_dict(), 'rnn_x_epoch.net')

回溯:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-9-e61f28013b35> in <module>()
----> 1 net.load_state_dict(torch.load('rnn_x_epoch.net'))

/opt/conda/lib/python3.6/site-packages/torch/serialization.py in load(f, map_location, pickle_module)
    301         f = open(f, 'rb')
    302     try:
--> 303         return _load(f, map_location, pickle_module)
    304     finally:
    305         if new_fd:

/opt/conda/lib/python3.6/site-packages/torch/serialization.py in _load(f, map_location, pickle_module)
    467     unpickler = pickle_module.Unpickler(f)
    468     unpickler.persistent_load = persistent_load
--> 469     result = unpickler.load()
    470 
    471     deserialized_storage_keys = pickle_module.load(f)

/opt/conda/lib/python3.6/site-packages/torch/serialization.py in persistent_load(saved_id)
    435             if root_key not in deserialized_objects:
    436                 deserialized_objects[root_key] = restore_location(
--> 437                     data_type(size), location)
    438             storage = deserialized_objects[root_key]
    439             if view_metadata is not None:

/opt/conda/lib/python3.6/site-packages/torch/serialization.py in default_restore_location(storage, location)
     86 def default_restore_location(storage, location):
     87     for _, _, fn in _package_registry:
---> 88         result = fn(storage, location)
     89         if result is not None:
     90             return result

/opt/conda/lib/python3.6/site-packages/torch/serialization.py in _cuda_deserialize(obj, location)
     68     if location.startswith('cuda'):
     69         device = max(int(location[5:]), 0)
---> 70         return obj.cuda(device)
     71 
     72 

/opt/conda/lib/python3.6/site-packages/torch/_utils.py in _cuda(self, device, non_blocking, **kwargs)
     66         if device is None:
     67             device = -1
---> 68     with torch.cuda.device(device):
     69         if self.is_sparse:
     70             new_type = getattr(torch.cuda.sparse, 
self.__class__.__name__)

/opt/conda/lib/python3.6/site-packages/torch/cuda/__init__.py in __enter__(self)
    223         if self.idx is -1:
    224             return
--> 225         self.prev_idx = torch._C._cuda_getDevice()
    226         if self.prev_idx != self.idx:
    227             torch._C._cuda_setDevice(self.idx)

RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at torch/csrc/cuda/Module.cpp:51

也可能是 Pytorch 中的 save/load 操作仅适用于 GPU 模式,但我不太相信这一点。

来自 PyTorch documentation:

When you call torch.load() on a file which contains GPU tensors, those tensors will be loaded to GPU by default.

要在 CPU 上加载保存在 GPU 上的模型,您需要在 load 函数中将 map_location 参数作为 cpu 传递,如下所示:

# Load all tensors onto the CPU
net.load_state_dict(torch.load('rnn_x_epoch.net', map_location=torch.device('cpu')))

在这样做时,张量的底层存储会使用 map_location 参数动态重新映射到 CPU 设备。您可以在官方PyTorch tutorials.

上阅读更多内容

也可以按如下方式进行:

# Load all tensors onto the CPU, using a function
net.load_state_dict(torch.load('rnn_x_epoch.net', map_location=lambda storage, loc: storage))